INSTITUT NATIONAL DE LINFORMATION GÉOGRAPHIQUE ET FORESTIERE

Low-cost precise localization of mobile vehicles in dense urban areas

B. Soheilian, L. Wei, X. Qu, V. Gouet-Brunet

IGN, SRIG, MATIS

October 17, 2014

ISTITUT NATIONAL DE LINFORMATION GÉOGRAPHIQUE ET FORESTIÈRE

Low-cost precise localization of mobile vehicles in dense urban areas

B. Soheilian, L. Wei, X. Qu, V. Gouet-Brunet

IGN, SRIG, MATIS

October 17, 2014

Context

- Generation of a 3D road infrastructure database
- **5** Vehicle localization with road infrastructure database
- **6** Experiments and evaluations

Context

Context

Precise localization in dense urban area:

- ► Context
- State of the art
- Proposed method
- Mapping
- Localization
- Experiments and evaluations
- Conclusions and perspectives

- ADAS
- Autonomous navigation
- Mobile mapping systems

IGN. France:

street view car

stereopolis

State of the art

Stereopolis

• GNSS

Context

State of the art

Proposed method

Mapping

Localization

Experiments and evaluations

Conclusions and perspectives

Context

the art

Proposed method Mapping Localization Experiments and evaluations Conclusions and perspectives

► State of

GNSS

- ©Advantages
 - Absolut localization
 - No error accumulation

Context

State of the art

Proposed method

Mapping

Localization

Experiments and evaluations

Conclusions and perspectives

• GNSS

- ©Advantages
 - Absolut localization
 - No error accumulation
- Orawbacks
 - Masks

Context

the art

Proposed

method

Mapping

Localization

Experiments and evaluations Conclusions and perspectives

► State of

GNSS

- ©Advantages
 - Absolut localization
 - No error accumulation
- ©Drawbacks
 - Masks
 - Multi-path
 - Bad geometric configurations

Stereopolis

Context

State of the art

Proposed method

Mapping

Localization

Experiments and evaluations

Conclusions and perspectives

GNSS

- ©Advantages
 - Absolut localization
 - No error accumulation
- Orawbacks
 - Masks
 - Multi-path
 - Bad geometric configurations

• INS/Odometer

- ©Relative localization
- ©High precision in short term

Context

State of the art

Proposed method

Mapping

Localization

Experiments and evaluations

Conclusions and perspectives

GNSS

- ©Advantages
 - Absolut localization
 - No error accumulation
- ©Drawbacks
 - Masks
 - Multi-path
 - Bad geometric configurations

• INS/Odometer

- ©Relative localization
- ©High precision in short term
- ©Error accumulation in long term

Context

State of the art

Proposed method

Mapping

Localization

Experiments and evaluations

Conclusions and perspectives

GNSS

- OAdvantages
 - Absolut localization
 - No error accumulation
- Orawbacks
 - Masks
 - Multi-path
 - Bad geometric configurations
- INS/Odometer
 - ©Relative localization
 - ©High precision in short term
 - Second Error accumulation in long term
- Hybridisation : GPS + INS + Odometer
 - High precision but expensive

IGN, SRIG, MATIS

Vision-based localization systems

Context

- State of the art
- Proposed method
- Mapping
- Localization
- Experiments and evaluations
- Conclusions and perspectives

- Vision-based methods
 - Visual odometry (D.Nistér, 04)
 SLAM (A. Davison et al., 03)
- ©Low-cost,
- ©Drift
- Vision-based Using external data
 - GPS (Lhuillier et al., 12)
 - 3D Patches
 - 3D city models
- ©Decrease drift
- ©Long GPS masks
- $\bullet \ \odot \mathsf{Precision}$ depends on the map

Figure: (Charmette et al., 10): Localization image, learning image, patches reconstruction

Figure: (Lothe et al., 09): Projection of 3D models after localization

Proposed method

Associate the online camera data with respect to a geo-referenced database of road infrastructures

Context

- Proposed
- method
- ► Strategies
- Mapping
- Localization
- Experiments and evaluations
- Conclusions and perspectives

IGN

Stereopolis

Associate the online camera data with respect to a geo-referenced database of road infrastructures

• Acquisition of reference data by a mobile mapping vehicle

IGN

Context

State of the art

Proposed method

► Strategies

Mapping

Localization

Experiments and evaluations

Conclusions and perspectives

Stereopolis

Associate the online camera data with respect to a geo-referenced database of road infrastructures

- Acquisition of reference data by a mobile mapping vehicle
- Generation of a 3D database of geo-referenced visual landmarks

IGN

Context

State of the art

Proposed method

► Strategies

Mapping

Localization

Experiments and evaluations

Conclusions and perspectives

Associate the online camera data with respect to a geo-referenced database of road infrastructures

- Acquisition of reference data by a mobile mapping vehicle
- Generation of a 3D database of geo-referenced visual landmarks
- Align an image or image sequence with respect to the reference database

IGN

Context

State of the art

Proposed method

► Strategies

Mapping

Localization

Experiments and evaluations

Conclusions and perspectives

Stereopolis

Context

State of the art

Proposed

method ► Strategies

Mapping

Localization

- Experiments and evaluations
- Conclusions and perspectives

- Components:
 - Localization system
 - Sensors
 - Storage system
 - Control system

Localization system

Localization system : Applanix POS-LV220

- Context State of
- the art
- Proposed method
- ► Strategies
- Mapping
- Localization
- Experiments and evaluations
- Conclusions and perspectives

- DMI: Distance Measurement Indicator
- GPS Antennas
- DGPS performance:

	With GNSS GNSS outage 6	
	post-processing	post-processing
X,Y Position (m)	0.020	0.240
Z Position (m)	0.050	0.130
Roll and Pitch (°)	0.020	0.060
Heading (°)	0.025	0.030

Optical sensors

Context

State of the art

Proposed method

► Strategies

Mapping

Localization

Experiments and evaluations

Conclusions and perspectives Two forward-rear looking stereo pairs • PIKE F-210C

Five wide angle cameras providing 360°

• PIKE F-421 B/C

Optical sensors

Optical sensors of stereo pairs

Context

- State of the art
- Proposed
- method ► Strategies
- Mapping
- Localization
- Experiments and evaluations
- Conclusions and perspectives

- PIKE F-210C:
 - Picture size: 1920×1080 pixels
 - ADC:12 bits
 - $\bullet\,$ Frame rates up to $31~{\rm fps}\,$
 - Chip size : $14 mm \times 7 mm$
 - Cell size : $7.4 \mu m \times 7.4 \mu m$

Lens:

- Focal length : 10 mm
- Aperture range 1.9-16
- Opening angle 70°

Optical sensors of panoramic head

Context

- State of the art
- Proposed method
- ► Strategies
- Mapping
- Localization
- Experiments and evaluations
- Conclusions and perspectives

- PIKE F-421 B/C:
 - Picture size: 2048×2048 pixels
 - ADC:14 bits
 - Frame rates : 1.875 fps 30 fps
 - Chip size : $15 mm \times 15 mm$
- Cell size : $7\mu m \times 7\mu m$ STILAR 2.8/8 lens:
 - \bullet Focal length : $8.5\ mm$
 - Aperture range 2.8-11
 - Opening angle $> 90^{\circ}$

Lidar

Context

State of the art

Proposed

► Strategies Mapping

Localization

Experiments

Conclusions and per-

spectives

and evaluations

RIEGL VQ-250

- Time of flight measurement
- $\bullet\,$ High scan speed up to 100 scans/sec
- $\bullet~$ Number of targets per pulse : 5--15
- \bullet Min. range : 1.5~m, Max. range: 500~m
- Rotating mirror
- Field of view : 360°
- Angular step $\Delta\phi$: $0.018^{\circ} \leqslant \Delta\phi \leqslant 0.72^{\circ}$
- \bullet Angle measurement resolution : 0.001°
- Accuracy : $10 \ mm$
- $\bullet~{\rm precision}$: 5~mm
- Echo signal intensity ! 16 bit
- Electrical interfaces for GPS data string and Sync Pulse (1PPS)

Lidar

Context

State of the art

Proposed method

► Strategies Mapping

Localization

Experiments

Conclusions and per-

spectives

and evaluations RIEGL VQ-250

- Time of flight measurement
- $\bullet\,$ High scan speed up to 100 scans/sec
- Number of targets per pulse : 5-15
- \bullet Min. range : 1.5~m, Max. range: 500~m
- Rotating mirror
- Field of view : 360°
- Angular step $\Delta\phi : \ 0.018^\circ \leqslant \Delta\phi \leqslant 0.72^\circ$
- \bullet Angle measurement resolution : 0.001°
- Accuracy : 10 mm
- $\bullet~{\rm precision}$: 5~mm
- Echo signal intensity ! 16 bit
- Electrical interfaces for GPS data string and Sync Pulse (1PPS)

Georeferenced data

Context

State of the art

Proposed method

► Strategies

Mapping

Localization

Experiments and evaluations

Conclusions and perspectives

Stereopolis

October 17, 2014 14 / 32

IGN, SRIG, MATIS

Georeferenced data

- Context
- State of the art
- Proposed method
- ► Strategies
- Mapping
- Localization
- Experiments and evaluations
- Conclusions and perspectives

October 17, 2014 14 / 32

IGN, SRIG, MATIS

Generation of a 3D road infrastructure database

Road infrastructures

Visual landmarks (semantic features):

- road signs, road surface markings, traffic lights
- Curbs, building facades, etc.

Context

State of the art

Proposed method

▶ Mapping

Localization

Experiments and evaluations

Conclusions and perspectives

Figure: Semantic landmarks

Advantages

- Stable to time and viewpoint changes
- Precision and robustness of landmarks (with estimated uncertainty)
- Less volume for data storage and matching

Generation of road infrastructure database

Map of 3D road markings (Soheilian et al. 2010)

- Input: a pair of images
- Output: 3D model of markings in sub-decimeter accuracy: parallelogram

State of the art

Proposed method

► Mapping

Localization

Experiments and evaluations

Conclusions and perspectives

Generation of infrastructure database

- Map of road signs (Soheilian et al. 2013)
 - Input: a set of geo-referenced color images
 - Output: 3D model of road signs in sub-decimeter accuracy: 3D rectangle, triangle, or circle
- the art Proposed method

Context

State of

- ► Mapping
- Localization
- Experiments and evaluations
- Conclusions and perspectives

Generation of infrastructure database

A geo-referenced road infrastructure database including:

- Map of 3D road markings
- Map of 3D road signs

Context State of the art

Proposed method

▶ Mapping

Localization

Experiments and evaluations

Conclusions and perspectives With simple geometric shape: road sign (polygon, triangle, or circle), road marking strip (parallelogram).

Stereopolis

October 17, 2014 18 / 32

IGN, SRIG, MATIS

IGN

Vehicle localization with road infrastructure database

Stereopolis

October 17, 2014 19 / 32

IGN, SRIG, MATIS

IGN

Sensors: (GPS + INS + cameras) low prices

Figure: Procedure of EKF based localization

Context

State of the art

Proposed method

Mapping

► Localization

Experiments and evaluations

Conclusions and perspectives

Sensors: (GPS + INS + cameras) low prices

Context

State of

Proposed method

Mapping ► Localization

and

the art

Sensors: (GPS + INS + cameras) low prices

Figure: Procedure of EKF based localization

Stereopolis

October 17, 2014 19 / 32

Context

State of

Proposed method

Mapping

 Localization
 Experiments

and evaluations

Conclusions and per-

spectives

the art

Sensors: (GPS + INS + cameras) low prices

Figure: Procedure of EKF based localization

Steps:
Pose prediction with accelerations
Detection and reconstruction: cameras
Association of visual

landmarks

Context

State of

Proposed method

Mapping
Localization

the art

Sensors: (GPS + INS + cameras) low prices

Figure: Procedure of EKF based localization

IGN

Context

State of the art

Proposed method

Mapping

► Localization

Experiments and evaluations

Conclusions and perspectives

 $\ensuremath{\mbox{Figure:}}$ Projection of 3D road sign and road marking landmarks on an image frame with raw camera pose

let R be the attitude of current vehicle state, $F_j(x, y, z)$ be the center of a landmark in the database, the expected 3D position EM_j of the landmark F_j in current vehicle frame is as:

$$EM_j = R^{-1}(F_j - X_k) \tag{1}$$

Stereopolis

October 17, 2014 20 / 32

IGN, SRIG, MATIS

IGN

Matching criteria between two 3D landmarks

Context

State of the art

Proposed method

Mapping

Localization

Experiments and evaluations

Conclusions and perspectives Between 2 road signs:

- Direction of road sign plane;
- Mahalanobis distance between two sign centers;
- Unique constraint.

Between 2 road marking strips:

- Type;
- Direction of road marking plane;
- Mahalanobis distance between the center of marking strips ;
- Unique constraint.

Figure: Between 2 road signs

Figure: Between 2 strips of markings

Matching ambiguities

Context

State of the art

Proposed method

Mapping

► Localization

Experiments and evaluations

Conclusions and perspectives

Figure: Association of landmarks in different conditions

Compatibility between different landmarks by using:

- Nearest neighbor search
- Multi-hypothesis filter

Stereopolis

Experiments and evaluations

Experimental data

Context

State of the art

Proposed method

Mapping

Localization

Experiments and evaluations

Conclusions and perspectives • Reference: Paris VI, 12km, 2012; 120 road signs

Figure: Database of visual landmarks

Reference images	Vehicle trajectory	Number of road signs	Number of markin
$2015 \times 12 \ cameras$	12km	120 (351k)	2116 (890k

Stereopolis

October 17, 2014 23 / 32

IGN, SRIG, MATIS

IGN

Experimental data

Context

State of the art

Proposed method

Mapping

Localization

Experiments and evaluations

Conclusions and perspectives

- Reference: Paris VI, 12km, 2012; 120 road signs
- Two test segments: 1013m and 533m

Figure: Database of visual landmarks

Pose ground truth of the test sequence were provided by GPS/INS/odometer post-processing software

Stereopolis

October 17, 2014 24 / 32

Evaluation

Context

State of the art

Proposed method

Mapping

Localization

Experiments and evaluations

Conclusions and perspectives

- True positive (TP): landmarks were detected in images and associated with the corresponding database landmarks;
- False positive (FP): landmarks were detected in images, but associated with wrong database landmarks;
- True negative (TN): there was no corresponding landmark of a detection due to false detection or the incompleteness of the database;
- False negative (FN): landmarks were detected in images but not associated with the corresponding landmarks in database.

Experiment 1: Results with road signs

Context

State of the art

Proposed method

Mapping

Localization

Experiments and evaluations

Conclusions

and perspectives

(a) before

Table: Statistic data of position correction with road landmarks

 \rightarrow

Landmarks	Signs
Locations with detections	21
TP (Correct association)	10
FP (Wrong association)	0
TN (No correspondence)	10
FN (Not associated with correspondence)	1

Stereopolis

October 17, 2014 26 / 32

IGN, SRIG, MATIS

IGN

Experiment: Results with road signs

Context

State of the art

Proposed method

Mapping

Localization

Experiments and evaluations

Conclusions and perspectives

Figure: Segment 1: landmarks association results (Red line: correct association; green line: wrong detection; yellow line: landmarks to be added into the database; red circles: reference road signs)

Experiment: Results with road signs

Figure: Vehicle position error before (first row) and after (second row) incorporating road sign based correction. Blue curves: vehicle position error with respect to the ground truth; red curves: 3-sigma (3 times the standard deviation of the estimated position error)

spectives

Experiment: Results with road signs/road markings

Conclusions

and perspectives

Figure: Segment 2: Vehicle position error with IMU, IMU+road sign, IMU+road marking, IMU+road sign+road marking

Experiment: Results with road signs/road markings

Context

State of the art

Proposed method

Mapping

Localization

Experiments and evaluations

Conclusions and perspectives

(b) After incorporating the road infrastructure objects

Stereopolis

IGN, SRIG, MATIS

Conclusions and perspectives

Conclusions

Conclusion:

- ③ Alignment method of images by using a database of geo-referenced visual landmarks
- ③ Reducing the error accumulation of INS by periodic pose correction with visual landmarks
- $\bullet~\odot$ Localization INS : $E_p=185m$ and $E_{alti}=280m$
- \odot Localization INS + landmarks : $E_p = 4.5$ and $E_{alti} = 6.7m$
- © Taken into account uncertainty of all the observations (the acceleration measures from INS and the 3D visual landmarks)

Context

State of the art

Proposed method

Mapping

Localization

Experiments and evaluations

Conclusions and perspectives

Conclusions

Context

State of the art

Proposed method

Mapping

Localization

Experiments and evaluations

Conclusions and perspectives Conclusion:

- ③ Alignment method of images by using a database of geo-referenced visual landmarks
- ③ Reducing the error accumulation of INS by periodic pose correction with visual landmarks
- $\bullet~\odot$ Localization INS : $E_p=185m$ and $E_{alti}=280m$
- \odot Localization INS + landmarks : $E_p = 4.5$ and $E_{alti} = 6.7m$
- ③ Taken into account uncertainty of all the observations (the acceleration measures from INS and the 3D visual landmarks)
- ③ Searching area for landmarks matching increases with the error accumulation of INS
- ③ Ambiguity of matching
- 🙁 Risk of getting lost

Perspectives

Context

State of the art

Proposed method

Mapping

Localization

Experiments and evaluations

Conclusions and perspectives • More experiments on other platforms

Perspectives

Context

State of the art

Proposed method

Mapping

Localization

Experiments and evaluations

Conclusions and perspectives

- More experiments on other platforms
- Re-localize the vehicle if the vehicle is lost or if the initial position of vehicle is not known by "place recognition" methods

Perspectives

Context

State of the art

Proposed method

Mapping

Localization

Experiments and evaluations

Conclusions and perspectives

- More experiments on other platforms
- Re-localize the vehicle if the vehicle is lost or if the initial position of vehicle is not known by "place recognition" methods
- Replace the inertial sensors by visual odometry or SFM and feed the semantic landmarks into bundle adjustment procedure (X. Qu 13)