

CNIG 06/10/2016 Observer la terre en 3D avec Pleiades-HR

jean-marc.delvit@cnes.fr, julien.michel@cnes.fr, christophe.palmann@c-s.fr, david.youssefi@c-s.fr, myriam.cournet@cnes.fr* Brève présentation de Pléiades

Rappels sur le principe de la stéréoscopie

Filières historiques de restitution 3D au CNES

Atelier 3D depuis 2015

Résultats obtenus

Brève présentation de Pléiades

Rappels sur le principe de la stéréoscopie

Filières historiques de restitution 3D au CNES

Atelier 3D depuis 2015

Résultats obtenus

Programme Pléiades HR

Système dual : civil et militaire

Système d'observation submétrique de la terre, développé par le CNES en coopération avec

Suède	Swedish National Space Board	
Belgique	Federal Office for Space Policy	
Espagne	Instituto nacional de Tecnica Aerospacial	
Autriche	Osterreichische Forschungsforderungesellschat	

Deux satellites en orbite en 11.5mois

Lancement : PHR1A 17 Décembre 2011 In flight acceptance : Mars 2012

PHR1B: 2 Décembre 2012 Février 2013

Pléiades : principales exigences mission

Caractériques Image

- PAN : 0.7 m de résolution au nadir
- 4 bandes XS (bleu, vert, rouge, proche IR) avec
 2.8 m de résolution au nadir
- 20 km de fauchée au nadir
- donnée codée sur 12 bits

Capacité de revisite

Journalière sur chaque point du globe avec les 2 satellites

Large capacité de couverture

En moyenne : 600 images par satellite par jour

Satellite Pléiades

Un nouveau concept par rapport à Spot

Pléiades est un petit satellite, très agile

Conçu pour une grande agilité

Compact : masse < 1000kg

Système de contrôle d'attitude avec actuateurs gyroscopiques

Conçu pour une bonne qualité image

Instrument très stable, têtes des capteurs montées sur le banc optique pour améliorer la précision géométrique des images

Brève présentation de Pléiades

Rappels sur le principe de la stéréoscopie

Filières historiques de restitution 3D au CNES

Atelier 3D depuis 2015

Résultats obtenus

Stéréoscopie : principe

Stéréoscopie : contributeurs

Contributeurs à la performance

- Géométrie relative et absolue (B/H et Δx)
 - Statique : cartographie du plan focal
 - Dynamique : vibrations
 - Affinage
- Mise en correspondance (Δx)
 - Opérateur (visuel)
 - Corrélation
 - Autres méthodes

Compromis à trouver sur le B/H

Fort B/H : images moins ressemblantes, occlusions Faible B/H : images ressemblantes, mais exigence sur précision du dx 0,12 < B/H < 0,15 sur Pléiades

Brève présentation de Pléiades

Rappels sur le principe de la stéréoscopie

Filières historiques de restitution 3D au CNES

Atelier 3D depuis 2015

Résultats obtenus

Filières historiques de restitution 3D au CNES

Satellites Spot :

- Spot 1, 2, 3 : B/H = 0.018 entre PAN et XS
- Spot 5 HRS : B/H = 0.8
- Spot 5 HRG : B/H = 0.02 entre PAN et XS

Depuis 1997, travail du CNES autour de la restitution 3D : [7], [8], [3], [4].

Sur ces filières historiques : > Corrélation 2D basée sur QPEC / Medicis [1]

Nuage de points généré avec tri-stéréo PHR 1A sur Grande Pyramide de Gizeh [4].

Outils de restitution 3D disponibles au CNES fin 2014

	CARS CNES (Delvit et al., 2015)	S2P CMLA / CNES (de Franchis et al., 2014)
Diffusion	Solution interne CNES, basée sur outils CNES	Solution open-souce : https://github.com/carlodef/s2p
Méthode	N-uplets	2 paires d'images
	Images secondaires ramenées dans géo image réf	Tuilage et stéréo-rectification locale de chaque paire de tuile
	Disparités 2D	Disparités 1D
	Intersection des lignes de visée	Fusion cartes d'altitude de chaque paire

Brève présentation de Pléiades

Rappels sur le principe de la stéréoscopie

Filières historiques de restitution 3D au CNES

Atelier 3D depuis 2015

Résultats obtenus

Atelier 3D depuis 2015

Orientations CNES décidées en 2015 pour la restitution 3D :

- Une seule chaîne basée sur S2P
- Intégration de certains aspects de la méthodologie CARS
- > Contribuer à S2P et éviter de partir en branche

Atelier 3D : améliorations apportées à S2P

Principales contributions du CNES à S2P depuis 2015 :

- Orientation calcul massif
 MNE Pléiades produit en 2h sur le cluster du CNES
- Gestion de N-uplets par S2P
- Fusion des cartes d'altitude remplacée par intersection des lignes de visée selon méthodologie CARS
- Ajout d'une filière 2D (héritage CARS)

Modifications CNES bientôt intégrées dans le github de S2P : <u>https://github.com/carlodef/s2p</u>

Filière 1D Stéréo-rectification des 2 tuiles

Filière 2D Rééch tuile secondaire dans géo de la tuile de référence (filière 2D, héritage CARS implémenté via H1 et H2 de S2P)

Calcul des cartes de disparités (pour chaque paire de la tuile)

Triangulation

Finalisation

process_tile Calcul carte des

hauteurs et nuage de points (pour une tuile donnée)

Détail du cœur de calcul de S2P pour une tuile donnée :

Calcul des cartes de disparités dans géométrie de la tuile de référence (stéréo-rectifiée dans le cas 1D). Algorithmes disponibles : SGBM, MGM, MSMW, ASP

Calcul des cartes de disparités Triangulation hauteurs et nuage de Intersection des lignes de visée donnant carte de points (pour une tuile hauteurs (tuile) Finalisation Nuage de points 3D (tuile)

process tile Calcul carte des

donnée)

Détail du cœur de calcul de S2P pour une tuile donnée :

Triangulation : Héritage CARS [5] implémenté dans S2P

Calcul de M (et donc de l'altitude) :

$$M = \left[\sum_{i} \left(Id - V_{i}V_{i}^{t}\right)\right]^{-1} \sum_{i} \left[\left(Id - V_{i}V_{i}^{t}\right)S_{i}\right]$$

M : résultat minimisation moindres carrés

Vi : vecteur directeur de la ligne de visée i

Si : point par lequel passe la visée i

Brève présentation de Pléiades

Rappels sur le principe de la stéréoscopie

Filières historiques de restitution 3D au CNES

Atelier 3D depuis 2015

Résultats obtenus

Résultats obtenus avec S2P

Triplet Pléiades sur une carrière proche de Marseille © CNES (2013), distribution Airbus DS/ Spot Image Nuage de points 3D généré via S2P et affiché dans CloudCompare [9]

Résultats obtenus avec S2P

MNS raster produit par S2P à partir de ce triplet Pléiades [9]

Résultats récents obtenus avec S2P

MNS produit sur la Camargue

Résultats récents obtenus avec S2P

MNS produit sur la Camargue

Evaluation des résultats de S2P

Evaluation 2013 - travaux de Durand et al. [6] sur tri-stéréo Pléiades sur Haïti

Comparaison de l'altitude obtenue par 4 chaînes de génération de MNS par rapport à référence LIDAR

21 zones de 5*5m² détourées sur référence LIDAR sur zones de toits plats

Evaluation des résultats de S2P

Evaluation 2013 - travaux de Durand et al. [6] sur tri-stéréo Pléiades sur Haïti

Comparaison de l'altitude obtenue par 4 chaînes de génération de MNS par rapport à référence LIDAR

Evaluation des résultats de S2P

Dernière évaluation disponible de S2P date de 2013 :

Travaux de Durand et al. [6], comparant 4 méthodes de génération de MNS sur tristéréo Pléiades.

Absence d'évaluation relative ou absolue des dernières évolutions de S2P

 \Rightarrow Un des axes de travail 2017 : évaluation relative et absolue du dernier S2P

Références

[1] Cournet, M., Giros, A., Dumas, L., Delvit, J. M., Greslou, D., Languille, F., Blanchet, G., May, S., and Michel, J.: 2D Sub-Pixel Disparity Measurement Using QPEC / Medicis, Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLI-B1, 291-298, <u>http://dx.doi.org/10.5194/isprs-archives-XLI-B1-291-2016</u>

[2] de Franchis C., Meinhardt-Llopis E., Michel J., Morel J.-M., Facciolo G., 2014a. An automatic and modular stereo pipeline for pushbroom images. In ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences. <u>http://dx.doi.org/10.5194/isprsannals-II-3-49-2014</u>

[3] Delvit J.-M., Artigues S., 2010. Automatic DEM generation from low B/H stereoscopic acquisition. SPIE 7831, Earth Resources and Environmental Remote Sensing/GIS Applications, 78310J. <u>http://dx.doi.org/10.1117/12.864541</u>

[4] Delvit J.-M., L'Helguen C., 2015. Observer la Terre en 3D avec Pléiades-HR. Revue Française de Photogrammétrie et de Télédétection No. 209

[5] Delvit J.M., P. Fave, R. Gachet, "The geometric supersite of Salon de Provence", ISPRS Congress Paris, 2006.

[6] Durand A., Michel J., de Franchis C., Allenbach B., Giros A., 2013. Qualitative assessment of four DSM generation approaches using Pleiades - HR data. EARSeL Symposium, pp. 499-510.

[7] Massonnet D., Giros A., Breton E., 1997. Forming digital elevation models from single pass SPOT data: results on a test site in the Indian Ocean. Geoscience and Remote Sensing. IGARSS '97. Remote Sensing - A Scientific Vision for Sustainable Development., 1997 IEEE International (Volume:2) <u>http://dx.doi.org/10.1109/IGARSS.1997.615213</u>

[8] May S., Latry C., 2009. Digital Elevation Model Computation with SPOT 5 Panchromatic and Multispectral Images using Low Stereoscopic Angle and Geometric Model Refinement. IGARSS (4): 442-445. http://dx.doi.org/10.1109/IGARSS.2009.5417408

[9] Michel J., de Franchis C., Meinhardt-Llopis E., Morel J.M., Facciolo G., S2P: a new open-source stereo pipeline for satellite images. Geomatics Workbooks n° 12 – "FOSS4G Europe Como 2015".

