

L'EXPLOITATION SCIENTIFIQUE DES VITESSES DE L'ITRF2014 : TECTONIQUE ET DÉGLACIATIONS

L. Métivier H. Rouby

- P. Rebischung
- Z. Altamimi

IGN, LAREG, Paris-Diderot University, Paris, France.

- **1.** ITRF2014 et vitesses des stations géodésiques.
- 2. Contexte géophysique.
- **3.** Vitesses horizontales : tectonique des plaques et GIA.
- 4. Vitesses verticales : GIA et changements climatiques. Une signature propre à l'ITRF2014.
- **5.** Conclusions.

SYSTÈME/REPÈRE INTERNATIONAL DE RÉFÉRENCE TERRESTRE

Le système (ITRS)

- Origine : centre des masses
- Évolution temporelle de l'orientation : condition de non rotation globale
- Échelle : unités SI

Le repère (ITRF)

- Réalisation physique du système de référence :

 « Etalon » de positions et vitesses de points à la surface de la Terre
- Combinaison de mesures des techniques de géodésie spatiale : GNSS – SLR – VLBI – DORIS

ITRF2014 (Altamimi et al., 2016) : dernière réalisation du système

- Nouveauté : Modélisation des mouvements nonlinéaires des stations
- Origine : Satellite Laser Ranging (SLR)
- Echelle : moyenne SLR et VLBI
- Orientation : aligné sur l'ITRF2008
- Précision : qq mms en position et ~1 mm/yr en vitesse

INTERNATIONAL TERRESTRIAL REFERENCE FRAME

ITRF2014: MODELLING NON-LINEAR STATION MOTIONS

1000 -800 -600 -400 -200

GEOPOS – L. Métivier – 19/03/2018

IGN

ITRF2014 – VITESSES DES STATIONS

Composante Horizontale

VITESSES « LONG TERMES »

VLBI : 1980 – 2015, GPS : 1994 – 2015, DORIS : 1993 – 2015.

Sources potentielles de vitesses :

- Déformations tectoniques
- Déformations co- et post-sismiques

🔶 « corrigées » dans l'ITRF2014

Rebond postglaciaire

Réajustement viscoélastique du sol suite à la dernière déglaciation. (Canada, Scandinavie, Antarctique, Groenland, ...)

Vitesses verticales et horizontales

Changements climatiques

Réponse de la Terre solide à la fonte des glaces/montée du niveau des mers

 Sources anthropogéniques (pompage des nappes, barrages, etc...)
 GEOPOS – L. Métivier – 19/03/2018

RÉAJUSTEMENT ISOSTATIQUE POSTGLACIAIRE (GIA : GLACIAL ISOSTATIC ADJUSTMENT)

Dernier Maximum Glaciaire (~20 000 ans) :

- Hauteurs de glace sur les différentes calottes polaires :
 - Laurentide (Am. Nord) : max. 5-6 km
 - Scandinavie (Europe Nord) : max. 3-4 km
 - Antarctique : max. 5 km
 - Groenland : max. 3-4 km
 - Islande, Svalbard, Patagonie : max. 0.5-2 km

Enfoncement du sol sous les calottes :

Laurentide : entre 500m -1km d'enfoncement

Déglaciation :

- Relâchement des contraintes
- Réajustement isostatique du sol
- Déformations gravitoviscoélastiques toujours en cours actuellement

IMPACT ACTUEL DU GIA

- Remontée viscoélastique du sol
 max. ~14-20 mm/an
- Perturbations du champ de pesanteur
 - max. ~2-3 mm/an sur le géoïde

Variations du niveau des mers

 Perturbation de la rotation et réajustement du bourrelet équatorial (rotational feedback)

GEOPOS – L. Métivier – 19/03/2018

DIFFÉRENTS MODÈLES DE GIA

- Remises en cause majeures du modèle ICE5G (VM2)
 - Trop de glace en Laurentide ouest, pas assez à l'est
 - Trop de glace en Antarctique (Whitehouse 2012)
 - Rotational feedback 7 fois trop grands (Chambers et al., 2010; Métivier et al., 2012)
 Vitesses tangentielles incohérentes (Argus &
 - Peltier, 2010)

Modèles alternatifs avec re-détérmination des niveaux de glace : Globaux : ANU (Lambeck et al., 2014) Locaux : BIFROST (Scandinavie), Ivins & James,

- Whitehouse (Antarctique)

BILAN ACTUEL DES MASSES DE GLACE

FONTE DES GLACES ACTUELLE

Taux de fonte :

Shepherd et al. (2012) - synthèse et combinaison des observations de gravimétrie spatiale et d'altimétrie satellitaire (~50 auteurs) :

Groenland - 200/-250 Gt/an, Antarctique -50/-100 Gt an.

Accélération ?

- Rignot et al. (2011) glaciologie et niveau des mers
- Matsuo et al. (2013) gravimétrie et altimétrie spatiales
- Vélicogna et al. (2014) gravimétrie spatiale

VITESSES HORIZONTALES ITRF2014

VITESSES DES STATIONS DE L'ITRF2014

Vitesses horizontales

Plaques tectoniques Modèle MORVEL56 (Argus et al., 2011)

Altamimi et al. (2016)

Estimation précise des pôles de rotation des plaques tectonique

SÉLECTION DES STATIONS

Critères de sélection des stations :

- Rouge :
 - Présence de post-sismique évident.
 - Zones de déformation de Kreemer et al.

Vert :

- Zones de GIA (selon ICE6G ou ANU).
- Zones polaires (fonte de glace récente).
- Bleu :
 - Autres stations : Sélection finale

Second invariant du tenseur des déformations de la Lithosphère (Kreemer et al., 2014)

GEOPOS – L. Métivier – 19/03/2018

PÔLES DES PLAQUES TECTONIQUE

Table 1. Absolute plate rotation poles defining ITRF2014-PMM.

	NS ^a					WRMS	
Plate		ω_x	ω_y	ω_z	ω	Е	Ν
		(mas yr ⁻¹)		(° Ma ⁻¹)	$(mm yr^{-1})$		
ANTA	7	-0.248	- 0.324	0.675	0.219	0.20	0.16
±		0.004	0.004	0.008	0.002		
ARAB	5	1.154	- 0.136	1.444	0.515	0.36	0.43
±		0.020	0.022	0.014	0.006		
AUST	36	1.510	1.182	1.215	0.631	0.24	0.20
±		0.004	0.004	0.004	0.001		
EURA	97	-0.085	-0.531	0.770	0.261	0.23	0.19
±		0.004	0.002	0.005	0.001		
INDI	3	1.154	-0.005	1.454	0.516	0.21	0.21
±		0.027	0.117	0.035	0.012		
NAZC	2	-0.333	- 1.544	1.623	0.629	0.13	0.19
±		0.006	0.015	0.007	0.002		
NOAM	72	0.024	- 0.694	- 0.063	0.194	0.23	0.28
±		0.002	0.005	0.004	0.001		
NUBI	24	0.099	- 0.614	0.733	0.267	0.28	0.36
±		0.004	0.003	0.003	0.001		
PCFC	18	-0.409	1.047	- 2.169	0.679	0.36	0.31
±		0.003	0.004	0.004	0.001		
SOAM	30	-0.270	-0.301	-0.140	0.119	0.34	0.35
±		0.006	0.006	0.003	0.001		
SOMA	3	-0.121	- 0.794	0.884	0.332	0.32	0.30
±		0.035	0.034	0.008	0.008		
ITRF2014-PMM overall fit						0.26	0.26

Comparaison entre modèles de plaques ITRF2014 et ITRF2008

(Altamimi et al., GJI 2017)

IMPACT DU REBOND POSTGLACIAIRE

L'impact du GIA est largement sous-estimé :

VITESSES VERTICALES ITRF2014

ITRF2014 – VITESSE VERTICALE DES STATIONS

Glacial Isostatic Adjustement (GIA) (e.g. ICE-6G model; Peltier et al., 2016)

EVALUATION DES SOLUTIONS ITRF : VITESSES VERTICALES GIA

- Les vitesses verticales GNSS ITRF sont comparées aux prédictions GIA sur les réseaux ITRF.
- Les solutions ITRF sont de plus en plus cohérentes avec les modèles GIA avec le temps.

NB : Exclusion des stations avec une précision supérieure à 1 mm/an ou présentant des déformations postsismiques (entre parenthèses : % des stations du réseau gardées)

... Excepté l'ITRF2014 !

COHÉRENCE DES VITESSES VERTICALES : ITRF2008

ITRF2008-GNSS vertical velocities

COHÉRENCE DES VITESSES VERTICALES : ITRF2014

ITRF2014-GNSS vertical velocities

ITRF2014 : PARTICULARITÉ

 A la différence des solutions précédentes, l'ITRF2014 présente un signal fort sur le Groenland, l'Alaska et la péninsule Antarctique.

Déglaciation actuelle

- Groenland (Alaska, Antarctique):
 - Nombreuses nouvelles stations
 - Non-linéarités : discontinuités de vitesse

Trajectory: Blue: Raw, Green: Linear, Red: PSD model Vertical gray lines represent discontinuities

GLOBAL SOLID EARTH FIGURE

Vertical velocities

$$v_r(\theta, \lambda, t) = \sum_{n=0}^{+\infty} \sum_{m=0}^{n} \dot{C}_{nm}(t) Y^c_{nm}(\theta, \lambda) + \dot{S}_{nm}(t) Y^s_{nm}(\theta, \lambda)$$
Spherical harmonic
(SH) functions
 (θ, λ) Colatitude, Longitude

Spherical Harmonic Coefficients (SHC) rates of degree 1 and 2 of the solid Earth figure:

 $(\dot{C}_{10}, \dot{C}_{11}, \dot{S}_{11})$ Geocenter motions (CF w.r.t. CM) along (Z, X, Y) axes

 C_{20} Solid Earth ellipticity

 $(\dot{C}_{21}, \dot{S}_{21})$ Rotations

 $(\dot{C}_{22}, \dot{S}_{22})$ Triaxiality

 \dot{J}_2 Geoid ellipticity

MÉTHODES DE RÉSOLUTION

Plusieurs méthode testées pour limiter l'aliasing :

- Moindre carré
- Transformée de Legendre sur diagramme de Voronoï

IGN

Evaluation des Méthodes et estimation des biais/erreurs réalistes :

 Près de 50 000 modèles synthétiques testés combinant modèles de GIA et modèles de fonte des glaces actuelle.

RÉSULTATS : COEFFICIENTS HS (2013)

RÉSULTATS : COEFFICIENTS HS (2013)

VARIATIONS D'ELLIPTICITÉ DE LA TERRE SOLIDE

Date

MOUVEMENTS DU GÉOCENTRE ET VARIATIONS DU J2

Problèmes :

- Mouvements de géocentre : il nous faudrait les vitesses horizontales corrigées de la tectonique des plaques.
- Variations du J2 (ellipticité du géoïde) : ne peuvent être déduites du C20 sans considérations rhéologiques.

Méthode :

- 1. Considérant un modèle GIA donné,
- 2. Supposant que les différences de coefficients HS avec le GIA sont dues à la fonte des glaces actuelle,
- 3. Supposant classiquement que les déformations due à la fonte actuelle sont élastiques,

On peut alors estimer le mouvement du géocentre et les variations de J2 à partir de l'ITRF2014

MOUVEMENTS DU GÉOCENTRE

DIFFÉRENTES ESTIMATIONS DU MOUVEMENT DU GÉOCENTRE

- Wu et al. (2011) : mouvement du géocentre ~0.5 mm/an (composante Z)
- Métivier et al. (2010) : modélisation géophysique (figure).
- ITRF2014 : mouvement du géocentre de 0.92 ± 0.50 mm/an en 2013.
- Evolution temporelle (composante Z) :
 - 2000 : 0.6 ± 0.4 mm/an
 - 2013 : 0.8 ± 0.4 mm/an

Métivier et al. (2010, 2011)

ANOMALIES DU J2 (ELLIPTICITÉ DU GÉOÏDE)

ÉLASTICITÉ VS VISCO-ÉLASTICITÉ

- Introduire un peu de viscoélasticité permet de diminue le taux de J2.
- Mais cela ne peut expliquer la totalité des écarts observés. Ce qui manque est probablement dû à la modélisation du GIA.

CONCLUSIONS

ITRF2014 – vitesses des stations :

- Solution précise qui évolue dans le temps au niveau des calottes polaires.
- Particularité : signature climatique sans précédent dans les vitesses verticales (fonte des glaces actuelle).
- Comment séparer l'impact de la tectonique, du GIA et des changements climatiques actuels ?

Vitesses horizontales :

- Nouveau modèle de tectonique des plaques (Altamimi et al., GJI 2017).
- Impact du GIA mésestimé et potentiellement fort.

Vitesses verticales :

- Variations de figure de la Terre induites par le GIA et la fonte des glaces actuelle.
- La solution ITRF2014 tend à corroborer l'accélération de la fonte des glaces.
- Notre solution surestime le taux de J2, probablement parce que l'on néglige la relaxation visqueuse et/ou que les modèles GIA sont imprécis.

MERCI

ÉLASTICITÉ VS VISCO-ÉLASTICITÉ

Nombres de Love :
$$h_n^E, k_n^E, h_n^V(t), k_n^V(t)$$

Potentiel charge glace : $V_{nm}^{ice}(t)$

Harmonique sphérique :

 $Y^{i}_{nm}(\theta,\lambda)$

Perturbations du potentiel de gravité :

$$\phi(\theta,\lambda,t) = \sum_{n=0}^{+\infty} \sum_{m=0}^{n} \sum_{i=c/s} \left(\left(1 + k_n^E \right) V_{nm}^{ice}(t) + k_n^V(t) * V_{nm}^{ice}(t) \right) Y_{nm}^i(\theta,\lambda)$$
Elasticity
$$i = 0$$

$$V is cous relaxation$$

$$< 0$$

Adding viscous relaxations in RIM deformations would increase solid Earth vertical motions and the C_{20} coefficient, but decrease gravitational potential perturbations and the J2-rate.

VERTICAL VELOCITIES: ITRF2000

ITRF2000-GNSS vertical velocities

VERTICAL VELOCITIES: ITRF2005

ITRF2005-GNSS vertical velocities

« UNBIASED » SOLUTIONS

IGN

THE ITRF & EARTH SCIENCE APPLICATIONS

Erreur due au référencement :

Une erreur de 2 mm/an le long de l'axe Z ==> erreur dans les mesures d'altimétrie satellitaire :

~0.5 mm/an sur le niveau moyen des mers
 ~2 mm/an sur les variations régionales du niveau des mers

Objectifs : 1 mm & 0.1 mm/an

