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What is chronometric geodesy?

Some semantics

@ Chronometry is the science of the measurement of time

Figure : Strontium clock in SYRTE/Paris Observatory
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What is chronometric geodesy?

Some semantics

@ Chronometry is the science of the measurement of time
@ Chronometric geodesy is sometimes named clock-based geodesy

o Relativistic geodesy is a wider term: it contains all geodesic
observables and models (relativistic gravimetry, gradiometry, ... )

Figure : Strontium clock in SYRTE/Paris Observatory
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What is chronometric geodesy?

Basic principle of chronometric geodesy

The flow of time, or the rate of a clock when compared to coordinate

time, depends on the velocity of the clock and on the space-time metric

(which depends on the mass/energy distribution).
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What is chronometric geodesy?

Basic principle of chronometric geodesy

The flow of time, or the rate of a clock when compared to coordinate

time, depends on the velocity of the clock and on the space-time metric

(which depends on the mass/energy distribution).

In the weak-field approximation:
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What is chronometric geodesy?

Basic principle of chronometric geodesy

The flow of time, or the rate of a clock when compared to coordinate
time, depends on the velocity of the clock and on the space-time metric
(which depends on the mass/energy distribution).

In the weak-field approximation:
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What is chronometric geodesy?

Chronometric observables in geodesy

@ Chronometric observables are a completely new type of observable in
geodesy: gravity potential differences are directly observed

Formal errors on the geoid (cumulated)
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What is chronometric geodesy?

Chronometric observables in geodesy

@ Chronometric observables are a completely new type of observable in
geodesy: gravity potential differences are directly observed

@ Accuracy of optical clocks starts to be competitive with classical
methods which have accuracies up to a few centimeters for the static
potential at high spatial resolution
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Proof-of-principle of chronometric geodesy
Outline

@ Proof-of-principle of chronometric geodesy

P. DELVA (SYRTE/Obs.Paris) Optical clocks and geodesy GEOPOS 2017 7 /38



Proof-of-principle of chronometric geodesy

A local comparison

Experimental demonstration of the dependency of clock frequency with
local heigth [Chou et al., 2010] with two Al* optical clocks.

Starting at data point 14, one of the clock is elevated by 33 cm. The net
relative shift is measured to be (41 & 16) x 1018

1
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Measurement number
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Proof-of-principle of chronometric geodesy

The shape of the Earth

As a proof-of-principle, one can determine (roughly) J> with two clocks:
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v

@ using INRIM CsF1 vs. SYRTE FO2 comparison
we find:

J» = (1.097 4 0.016) x 1073
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Proof-of-principle of chronometric geodesy

The shape of the Earth

As a proof-of-principle, one can determine (roughly) J> with two clocks:
Af W — Wy _a v2
— =—=40 W=U+ —
f c? +0(c™) + 2
GM, hHRZ
U= =75 |14 25 (1-3sin(9)?)

v

P. DELVA (SYRTE/Obs.Paris)

@ using INRIM CsF1 vs. SYRTE FO2 comparison
we find:

J» = (1.097 4 0.016) x 1073

@ Error of ~ 1.4% compare to best known value

@ However, ground clocks are sensitive to higher
order multipoles of the grav. potential
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Some definitions and conventions
Outline

© Some definitions and conventions
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Some definitions and conventions

Chronometric levelling

Possibilities for technical realisation of a system for measuring potential
differences over intercontinental distances using clock comparisons
[Vermeer, 1983]
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Some definitions and conventions

Chronometric levelling

Possibilities for technical realisation of a system for measuring potential
differences over intercontinental distances using clock comparisons
[Vermeer, 1983]

Need accurate clocks
@ Hydrogen maser clocks: considered initially, but not accurate
@ Cesium clock: accurate by definition but limited to ~ 1 m
@ Optical clocks: best knowledge of frequency ratios is needed —
systematic comparison of optical clocks

ITOC
International S
Timescales with %y, 7 (‘,’
Optical Clocks LA

)
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Some definitions and conventions

Main challenge: stable links for frequency comparison

o Satellite (GNSS, TWSTFT): intercontinental but limited to ~ 1071,
rather long integration time
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Some definitions and conventions

Main challenge: stable links for frequency comparison

Satellite (GNSS, TWSTFT): intercontinental but limited to ~ 10716,
rather long integration time

Broadband TWSTFT (ITOC), T2L2 (optical): better stability and
faster integration, but still far from what is needed

ACES Micro-Wave Link (MWL): plan is to achieve 10717 frequency
comparisons

Fibre links: best accuracy (~ 1071% over thousands of kilometers in
just 100 s demonstrated), but limited to continental scales

@ Free space coherent optical links through turbulent atmosphere are in
their infancy, but show potential for similar performance as fibre links

e Transportable optical clocks are developed (back to the future?)
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Some definitions and conventions

The chronometric geoid

“The relativistic geoid is the surface where precise clocks run with the
same speed and the surface is nearest to mean sea level”
[Bjerhammar, 1985]
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Some definitions and conventions

The chronometric geoid

“The relativistic geoid is the surface where precise clocks run with the
same speed and the surface is nearest to mean sea level”
[Bjerhammar, 1985]

@ Operational definition based on clock comparisons
@ Problem of the realization of the geoid. ..
@ ...solved by the conventions of the IAU in 2000
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Some definitions and conventions

Isochronometric surfaces

@ An isochronometric surface S is a surface where all clocks beat at the
same rate:

—| =cst
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Some definitions and conventions

Isochronometric surfaces

@ An isochronometric surface S is a surface where all clocks beat at the

same rate:
dr

atls
@ They are almost equivalent to newtonian equipotential of the gravity
field (differences of the order of 2 mm)

= cst
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Some definitions and conventions

Isochronometric surfaces

@ An isochronometric surface S is a surface where all clocks beat at the
same rate:
dr|
a4t . cst
@ They are almost equivalent to newtonian equipotential of the gravity
field (differences of the order of 2 mm)
e By defining Terrestrial Time (TT) with reference to TCG, the IAU
implicitly defined a reference isochronometric surface Sp:

dr

d(TCG)

=cst=1—L¢g, Lg =6.969290134 x 10710

So
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Some definitions and conventions

Isochronometric surfaces

@ An isochronometric surface S is a surface where all clocks beat at the
same rate:

dr|
a4t . cst
@ They are almost equivalent to newtonian equipotential of the gravity
field (differences of the order of 2 mm)
e By defining Terrestrial Time (TT) with reference to TCG, the IAU
implicitly defined a reference isochronometric surface Sp:

dr

d(TCG)

=cst=1—L¢g, Lg =6.969290134 x 10710
So

@ The corresponding (newtonian) gravity equipotential is:

W = c?L¢ ~ 62636856.00 m>.s >

@ The classical geoid moves away from the reference isochronometric Sg
surface with ~ 2 mm /year speed, i.e. 2 x 10718 in 10 years
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Outline

@ ACES/Pharao
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ACES/Pharao

ACES-Paharao: une fontaine atomique dans |'espace

@ Objectifs techniques: créer une
échelle de temps de haute
exactitude dans |'espace et relier
les différentes horloges au sol
entre elles
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ACES/Pharao

ACES-Paharao: une fontaine atomique dans |'espace

@ Objectifs techniques: créer une
échelle de temps de haute
exactitude dans |'espace et relier
les différentes horloges au sol
entre elles

@ Objectifs scientifiques: améliorer
la mesure de I'effet Einstein
d'un facteur ~ 50 par rapport
GP-A; géodésie chronométrique
~ 10 cm (entre autres)

Plus 150 personnes travaillent sur ce projet depuis plus de vingt ans!
(ESA, CNES, ADS, LKB, Syrte,...) J
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ACES/Pharao

Les stations au sol

1 transportable MWL or calibration/troubleshooting purposes
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Unifying the gravitational redshift correction

Outline

© Unifying the gravitational redshift correction
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Unifying the gravitational redshift correction

Consortium of the ITOC EMRP project

NPLE

National Physical Laboratory

ISTITUTO
NAZIONALE
DI RICERCA
METROLOGICA

© MIKES

PB
v 0@\@!95! e

o

National Physical Laboratory (NPL, UK)

Cesky Metrologicky Institut (CMI, Czech Republic)

Istituto Nazionale di Ricerca Metrologica (INRIM, ltaly)

Mittatekniikan Keskus (MIKES, Finland)

Physikalisch-Technische Bundesanstalt (PTB, Germany)

SYRTE — Paris Observatory (France)

IfE — Leibniz Universitdt Hannover (Germany)
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Unifying the gravitational redshift correction

Classical levelling of the clocks [Denker, 2013]

@ Design of setups to determine the static gravity potential at all clock
locations

@ Development of a refined European geoid model including new gravity
observations around all relevant clock sites (done by IfE/LUH)

5 SYRTE clocks
leveling
.. campaign

(IGN SGN
Travaux
Spéciaux)
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Unifying the gravitational redshift correction

Gravity campaigns [Denker, 2015]

NMI Absolute Relative Comparison Mean
gravity pts gravity pts  with existing pts  difference (mGal)

INRIM 1 35 11 -0.87
LSM 1 122 Italy 10 +0.20

France 6 +0.37
NPL 2 64 25 -0.07
SYRTE 142 97 27 -0.12
PTB 1 45 16 +0.08
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A new geoid of reference:

Unifying the gravitational redshift correction

EGG2015 [Denker, 2015]

3
49°00' A 4900

48°45' N P

NMI Mean | Std | Min | Max
INRIM 2.7 13107 | 73
LSM 39 [ 39 |-53]16.6
NPL -09 |02|-14| 04
OBSPM -0.7 02 1]-14| -0.2
PTB -03 |01 1]-06] 0.0

Table : Difference statistics between the

new (EGG2015) and old (EGG2008)

quasigeoid heights in centimers.

P. DELVA (SYRTE/Obs.Paris)

Figure : Differences around OBSPM (aA:
new ITOC points; e: old points)
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Figure : Differences between the new (EGG2015) and old (EGG2008) quasigeoid
heights around INRIM and LSM (A: new ITOC points; e: old points)
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Unifying the gravitational redshift correction

Differences between GNSS /geoid & geometric levelling
approach [Denker, 2015]

AC = C(GNSS/geoid) _ C(lev) J

NMI AC (1072 m2.572)
INRIM 2.3
LSM 8.3
NPL -15.3
OBSPM -11.3
PTB 2.3

-0.5 0 +0.5m
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Chronometric geodesy for high resolution geopotential

@ Chronometric geodesy for high resolution geopotential
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Chronometric geodesy for high resolution geopotential

Chronometric geodesy for high resolution geopotential

European
Research
Council

u 3 Y
l.@\{agplye 4AR‘EG > EIJIF;ST

mEED \ \LEthatF‘\‘re’ Kast‘\FF“Brnsftz‘\ GRAM

e Collaboration between SYRTE/Obs.Paris, LAREG/IGN and LKB,
with the support of GRAM, First-TF and ERC grants
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Chronometric geodesy for high resolution geopotential

Chronometric geodesy for high resolution geopotential

European

YC | Research

i @ K D) 5 FIRST ouncil
l .@‘@!9'? e 4AREG 5 ol cont

mEEL \ \LEthatF‘\‘re’ Kast‘\FF‘{Brnsftz‘\ M . T F

e Collaboration between SYRTE/Obs.Paris, LAREG/IGN and LKB,
with the support of GRAM, First-TF and ERC grants
o Goals
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Chronometric geodesy for high resolution geopotential

Chronometric geodesy for high resolution geopotential

European
Research
Council

') t i @ gj \'% FIRST
@\{am\re 4@5&3 \ \LEthatF‘\‘re’ Kast‘\FF“Brnsftz‘\ G&M . / TF
e Collaboration between SYRTE/Obs.Paris, LAREG/IGN and LKB,
with the support of GRAM, First-TF and ERC grants
o Goals

e evaluating the contribution of optical clocks for the determination of
the geopotential at high spatial resolution
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Chronometric geodesy for high resolution geopotential

Chronometric geodesy for high resolution geopotential

European
c Research
Council

') t i @ gj \'% FIRST
@\{am\re 4@5&3 \ \LEthatF‘\‘re’ Kast‘\FF“Brnsftz‘\ G&M . / TF
e Collaboration between SYRTE/Obs.Paris, LAREG/IGN and LKB,
with the support of GRAM, First-TF and ERC grants
o Goals

e evaluating the contribution of optical clocks for the determination of
the geopotential at high spatial resolution

e Find the best locations to put optical clocks to improve the
determination of the geopotential
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Chronometric geodesy for high resolution geopotential

Chronometric geodesy for high resolution geopotential

European

YC | Research

i @ K D) 5 FIRST ouncil
l .@‘@!9'? e 4AREG 5 ol cont

mEEL \ \LEthatF‘\‘re’ Kast‘\FF‘{Brnsftz‘\ M . T F

e Collaboration between SYRTE/Obs.Paris, LAREG/IGN and LKB,
with the support of GRAM, First-TF and ERC grants
o Goals
e evaluating the contribution of optical clocks for the determination of
the geopotential at high spatial resolution
e Find the best locations to put optical clocks to improve the
determination of the geopotential
e Lion, G., Panet, I., Wolf, P., Guerlin, C., Bize, S., Delva, P., 2017.
Determination of a high spatial resolution geopotential model using
atomic clock comparisons. J Geod 115.

P. DELVA (SYRTE/Obs.Paris) Optical clocks and geodesy GEOPOS 2017 27 / 38



Chronomet esy gh resolution geopotential

The Auvergne region in France

Interesting region because:

@ The gravitational field strength varies
greatly from place to place at high
resolution

Topography [m]

T T T T
0 300 600 900 1200 1500
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Chronometric geodesy for high resolution geopotential

The Auvergne region in France

47"

46"

45"

44°

47"
46°
Interesting region because:
@ The gravitational field strength varies
4 greatly from place to place at high
resolution
@ The gravimetric measurements
PP distribution is very irregular
'*g.‘u,!
: 43"
i
] mGal
200
Optical clocks and geodesy GEOPOS 2017
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Global methodology

Reference model
—| gravity anomaly dg
potential anomaly 6 T

STEP 1: build syn-
thetic field model
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Chronometric geodesy for high resolution geopotential

Global methodology

STEP 1: build syn-
thetic field model

Reference model

STEP 2: add sim-
ulated noise and
choose distribution

gravity anomaly 5?g_
potential anomaly 6 T
.

J

Y

-

P. DELVA (SYRTE/Obs.Paris)

A

0g (gravimeters)
and 6T (clocks)

~N

Simulated measurements

Optical clocks and geodesy

GEOPOS 2017
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Chronometric geodesy for high resolution geopotential

Global methodology

STEP 1: build syn-
thetic field model

Reference model

STEP 2: add sim-
ulated noise and
choose distribution

gravity anomaly 5?g_
potential anomaly 6 T

. J

y
e N

Simulated measurements

STEP 3: Estimation of
reference model from
simulated measurements

A

0g (gravimeters)
and 6T (clocks)

!

Estimated model

P. DELVA (SYRTE/Obs.Paris)

og and 6T

. J
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Chronometric geodesy for high resolution geopotential
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STEP 1: build synthetic field model

© Global gravity model at 10 km .5

resolution (EIGEN-6C4, Forste ool

et al. 2014) B
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Figure : Filtre based on Poisson wavelets
at order 3 (Holschneider et al. 2003)
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STEP 1: build synthetic field model

.
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Figure : Reference gravity anomaly Figure : Reference potential anomaly
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STEP 2: add noise and choose observables distribution
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reduction to 4374

@ One gravimetric measurement every
~ 6.5 km

@ We add only 33 clock points

@ White noise: 1 mGal for gravimetry
and 1078 in relative frequency for
clock points
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STEP 3: estimation of reference model

701

Empirical

60

@ Prior on field regularity: S =
estimation of a 3D covariance i
function from the simulated
gravimetric measurements

30+

20 5

Covariance [mGaIZ]

0 50 100 150 200

Figure : Fit: logarithmic covariance
model by Forsberg (1987); Empirical:
empirical covariance. Correlation length
is ~ 20 km
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Estimation of potential from gravimetric data

@ 4374 simulated
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Estimation of potential from gravimetric and clock data
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Estimation of potential from gravimetric and clock data
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Estimation of potential from gravimetric and clock data
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Estimation of potential from gravimetric and clock data
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@ 4374 simulated
gravimetric measurements
+ 32 clock comparisons

o Potential anomaly
residuals:

e Standard deviation
o =0.07 m?s72
(~ 0.7 cm on geoid
heights)

o Mean
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@ The residual trend
disappeared
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Conclusion

Conclusion

Atomic clocks are rapidly improving in accuracy and stability

Chronometric Geodesy: directly measure gravity potential differences
with clock comparisons (accuracy few cm); and variations of gravity
potential differences (stability ~1 cm @ 7h)

ACES/Pharao: chronometric geodesy ~ 30 cm

Unifying the gravitational redshift correction:

o New geoid of reference for atomic clocks [Denker, 2015]
e Unification of the redhift correction in 5 euopean metrology lab,
according to the IAU convention

@ High resolution potential determination:

e Only a few clock comparisons can significantly improve the
determination of the geopotential at high resolution

o Improvement from ~ 2.5 cm standard deviation on the geoid heigths to
~ 0.7 cm with only 32 clock comparisons
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