RADIO INTERFERENCE AT 06-GPS

CASE 1: MOBILE NETWORK PROVIDER CASE 2: RADIO AMATEURS

0 %

0

er (-20DB)

0

HET MEEST VEELZIJDIGE NETWERK

OG-GP

30

Net Re., Harmen va

ONSRVR.bat Geo++ GNSM

SNR Elevatie

+Configur...

20

al TS V5

40

60

25

1/25 11:56:36 GPST : EP=3265 N=85770 SNR=.

PCTrans42

50

60

.45

70

Dordreicht Septent

🥳 C:\Users\H

10

20

:00 GPST-11/25 10:

Boogies met sp

File Edit

COMPANY INFORMATION

06-GPS BV NL Sliedrecht Jean-Paul Henry, MSc Operational Director j.p.henry@06-gps.nl

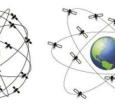
COMPANY INFORMATION 06-GPS

- Independent, commercial provider of GNSS-data
- 20 years of expertise in Network GNSS-RTK
- Market leader of Network RTK in the Netherlands
- 5 employees full time, 6 employees part time
- Part of group of companies in surveying and engineering with over 200 employees in total

COMPANY INFORMATION 06-GPS

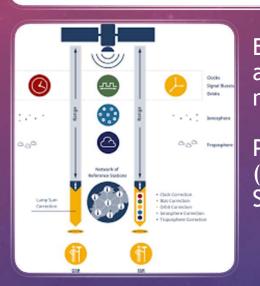
Thousands of registered users:

- Governments (national, local, communities)
- Surveying and engineering companies
- Contractors (roads, railways, underground infrastructure)
- Energy companies
- Archeologists, police, schools, universities
- Farmers, Drones, Automotive, etc.



GPS 6 Orbital planes 24 Satellite + Spare 55º Inclination Angle Altitude 20,200 km

21 Satellite + 3 Spares


64.8° Inclination Angle

Altitude 19,100 km

Galileo 3 Orbital planes 27 Satellite + 3 Spares 56º Inclination Angle Altitude 23,616 km

GLONASS 3 Orbital planes

BeiDou 6 Orbital planes 35 Satellite + 3 GEO + 27 MEO + 3 IGSO 55º Inclination Angle Altitude 38,300 km, 21,500 km

Extensive relations with, and knowledge of other networks within Europe.

Planned upgrade to PPP-RTK (SSR: Compact, SSR-Z / SPARTN / IGS)

COMPANY INFORMATION 06-GPS

Benelux coverage

Full support of GPS, GLONASS, Galileo, Beidou Delivery RTK over NTRIP (internet) using RTCM 3 format

Over 10 years of cooperation with (among others):

LTO Nederland, the Netherlands Agricultural and Horticultural Association (>35000 members).

Bouwend Nederland, the employers' organization in the construction and infrastructure industries (4300 members).

Certifications: TüV SüD / Navcert Accuracy 2cm (95%) Availability (99%) Competence and service

TüV SüD / Navcert dynamic acc. 2cm (95%) Suited for Precise Farming Suited for Guidance Systems

TABLE OF CONTENTS

- Case 1: Mobile network provider
 - Discovering of radio interference
 - Finding the source of interference
 - Contact with interference source
 - Finding mitigation solutions
 - Testing mitigation solutions
 - Implementing the best solution

- Case 2: Radio amateurs
 - Discovering of radio interference
 - Finding the source of interference
 - Contact with interference source

CASE 1: MOBILE NETWORK PROVIDER

GNSS interference caused by new signals in telecomMUnicationS

GNSS-RECEIVERS AT EACH BASE STATION:

Each 06-GPS station has two different receivers on same antenna using an atnenna splitter

Topcon NET-G5

Septentrio PolaRx5

DISCOVERING RADIO INTERFERENCE

- Important to know the normal (SNR) values
- Affected Site: Ede
 - Topcon NET-G5 receiver stated to show low SNR at GPS
 - Septentrio PolaRx5 receiver was still showing normal SNR at GPS

Position	Misc	SV List	Sky Plot	Scatter	Posit	ion In Tim	e Log	ging		
PRN [↑]	EL	AZ	C/A	L2C	L1P	L2P	L5	тс	55	
Ø G2	314		40		32	32		63	0	
Ø G3	29	- 106	38	38	37	37	40	325	0	
Ø G4	59	- 66	39	41	36	37	42	91	0	
Ø 66	62	- 254	42	44	41	42	44	91	0	
Ø G7	21-	172	38	35	36	36		24	0	
Ø 69	78-	218	40	42	40	40	42	90	0	
Ø G17	6	- 224	34	31	28	28		91	0	
ØG19	14	- 236	37		24	24		90	0	
Ø G22	9	- 112	33		19	19		91	0	
Ø G26	9+	50	33	34	27	27	39	19	0	
SN↑	EL	AZ	C/A	L2CA	L1P	L2P	L3	TC	55	FCN
🖉 R1	67	- 40	40	41	40	41		36	0	1
ØR2	36-	274	44	44	44	44		86	0	-4
🖉 R8	26	- 70	42	42	42	42		35	0	(
🖉 R9	10	- 12	40	40	39	39		143	0	-1
Ø R10	334	58	42		42			35	0	-7
ØR11	21-	122	41	40	41	40		36	0	(
ØR17	47-	292	41	43	41	43		112	0	4
ØR18	16-	340	39	40	39	40		26	0	-3
Ø R23	7	- 192	39	34	38	34		36	0	3
<i>Ø</i> R24	36	- 218	42	43	41	43		212	0	1
PRN↑	EL	. AZ	E1	E5a	E5b	E5ab	E6	TC	55	
ØE2	18-	- 60	36	39	38	39	39	64	0	
ØE7	79	- 70	40	43	41	42	42	91	0	
🖉 E8	26	- 70	39	41	40	41	41	359	0	
C E13	5	- 170	33	34	33	34	34	91	16	
© E20	?	? ??	38					48	29	
ØE25	6		34	37	37	37	36	30	0	
ØE26	45	- 208	41	41	39	40	40	91	0	
<i>S</i> E30	114		36	38	37	37	38	7	0	
PRNî	EL		B1	B1C	B2b	B2a	B3	тс	55	
ØC5	13		35		36		38	64	0	
ØC7	8-		34		36		35	15	0	
Ø (9	15		35		37		37	90	0	
ØC12	14-		36		39		40	16	0	
ØC19	754	286	41				23	143	0	
ØC20	49	- 86	40				41	304	0	

COMPARING TOPCON NET-G5 AT VARIOUS SITES:

With interference

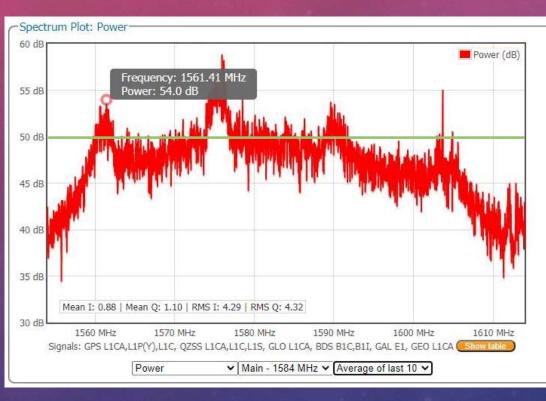
🐔 Stati	us NET-G	5 ID:W1	ONNCAN	C20		0				? _	
Position	Misc	SV List	Sky Plot	Scatter	Positi	ion In Tim	e Log	ging			
PRN ↑	EL	AZ	C/A	L2C	L1P	L2P	L5	TC	55	1	
Ø G1	6-	150	32	32	26	27	38	8	0		
Ø G2	17+	316	38		25	25		8	0		
G G3	44-	94	40	41	40	40	43	289	0		
Ø G4	74-	90	40	42	38	38	42	27	0		
Ø G6	57+	290	41	42	40	41	43	128	0		
G 9	59+	216	39	41	39	39	42	85	0		
Ø G17	20-	234	39	37	29	29		26	0		
¢ G19	28-	248	39		32	32		26	0		
Ø G22	23-	102	38		28	28		26	0		
631	10-	30	36	33	31	32		8	0		
5N↑	EL	AZ	C/A	L2CA	L1P	L2P	L3	TC	55	FCN	
© R1	30	262	41	40	41	40		27	6	1	
Ø R7	46-	56	43	45	43	45		244	0	5	
Ø R8	71+	298	41	43	41	43		144	0	6	
Ø R9	25+	84	40	41	40	42		26	0	-2	
ØR10		130	37		37			3	0	-7	
Ø R16		30	39	38	38	38		24	0	-1	
Ø R22		186	39	30	38	31		287	0	-3	
Ø R23	58-	262	41	42	41	41		150	0	3	
🖉 R24	38+	318	44	44	44	44		28	0	2	

Without interference

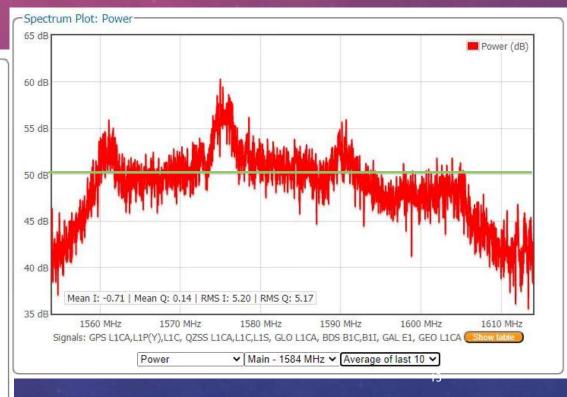
Position 1	Misc S	V List	Sky Plot	Scatte	r Positi	on In Tim	e Log	ging			
PRN↑	EL	AZ	C/A	L2C	L1P	L2P	L5	TC	55		1
🛇 G1	4-	152	37	34	30	31	40	385	16		
Ø G2	18+	316	43		28	28		36	0		
🖉 G3	44-	98	48	46	50	50	52	293	0		
Ø G4	74-	92	48	53	45	44	57	189	0		
Ø G6	57+	286	51	49	55	55	56	134	0		
🖉 G7	5+	176	37	33	29	30		3	0		
Ø G9	59+	218	52	50	57	57	56	119	0		
Ø G17	19-	234	41	38	29	29		238	0		
Ø G19	26-	248	45		35	34		195	0		
Ø G22	23-	104	43		30	31		346	0		
G25	1-	346	34	31	12	13	37	50	16		
Ø G31	10-	30	38	35	35	35		182	0		
SN†	EL	AZ	C/A	L2CA	L1P	L2P	L3	TC	55	FCN	
© R1	30	264	47	43	46	43		63	6	1	
Ø R7	46-	58	54	52	52	52		245	0	5	
🖉 R8 👘	72+	300	53	56	52	55		152	0	6	
Ø R9	27+	84	50	49	49	48		61	0	-2	
Ø R10	7+	130	43		42			6	0	-7	
Ø R16	22-	28	43	42	42	41		114	0	-1	
Ø R22	14-	188	42	34	41	33		289	0	-3	
Ø R23	57-	260	57	48	56	48		153	0	3	
Ø R24	39+	316	54	50	53	49		79	0	2	

ANALYZING INTERFERENCE:

Theoretical steps:

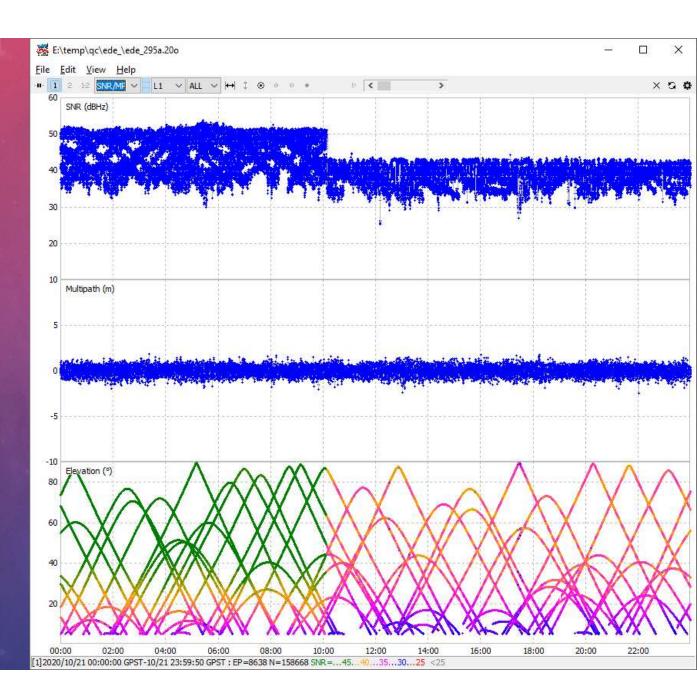

- 1. Spectrum analyses
- 2. Temporal analyses
- 3. Geographical analyses

Practical implementation


- 1. Spectrum plot of PolaRx5
- 2. Search in RINEX-log
- 3. plotting RINEX-log of all stations

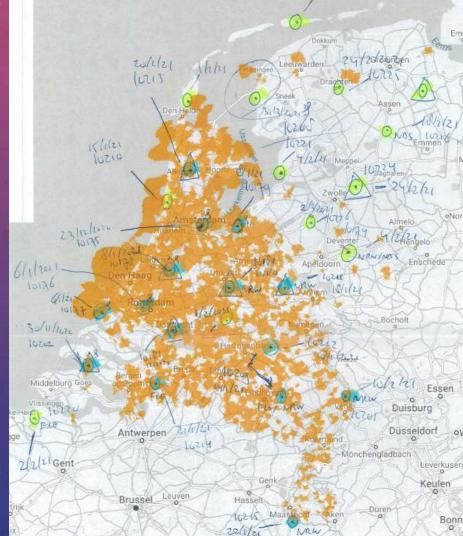
1. SPECTRUM ANALYSIS

With interference



Without interference

2. TEMPORAL ANALYSES


- Browsing the data to find the origin of the interference
- Use RTK-LIB to plot RINEX-log
- Interference started during the day as if a stationary signal was turned on
- 10 dB decrease (20%) !
- Station has 2 receivers on 1 antenna but only 1 receiver was affected.
- Only Topcon NET-G5 affected
- Septentrio PolaRX5 stayed
 unaffected

A manual analysis show that KPN 5G-internet is directly correlated with the interference

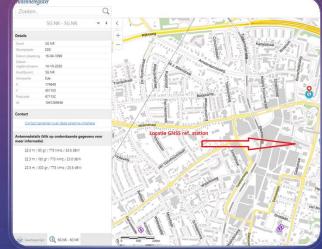
20/1/21 HET MEEST VEELZIJDIGE NETWERK **OG-GPS** Î NR. ichiles luzio Multipath (m) Wijk aan 2 23/12/10 6/1/202 Elevation (°) GAL Solution 50 SNR (dBHz) Middelburg 0.10/21 Antwerpen Multipath (m) 16214 2/2/2/Gent Brussel Leuven Elevation (°)

GEOGRAPHICAL ANALYSES

TEMPORAL FIT WITH THE CASE EDE

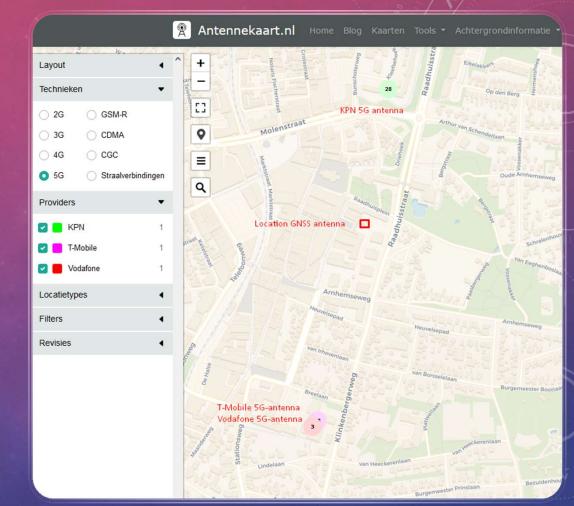
Using two different sources:

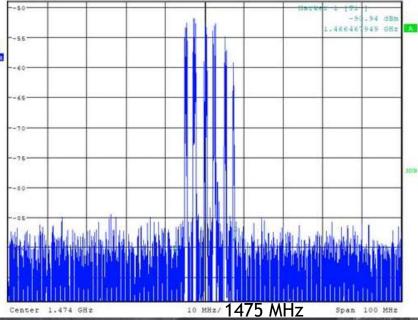
- List from KPN with maintenance date, time and location
- Dutch antenna registry map


Mobile network maintenance and interference had an **exact fit**

Mobile network antenna pointed to our GNSS antenna.

During maintenance, 5G was also implemented


5G: 784 MHz -> 2nd harmonic: 1.568 MHz (close to GPS L1 1.575 MHz)



INCONSISTANCIES WITHIN THE THEORY

- Other networkproviders turned on 5G-internet without causing interference.
- Only at KPN-antennas interference was found, providers Vodafone and T-Mobile have almost equal 5Ginternet 700 MHz frequencies.

COLLABORATING TO FIND PROBLEM

Agentschap Telecom

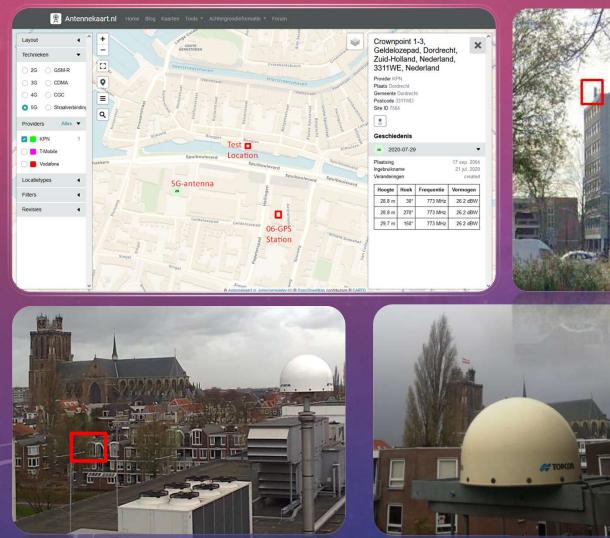
- Only KPN turned 4G LTE+ signal on
- 4G LTE+ at 1.475 MHz
- Only downlink (mast -> modem) due to possible interference of mobile-phone GPS
- Field tests with 1.475 MHz radiator proved theory

KPN

- Took almost 3 months to get a technical response
- 5G didn't cause interference
- 4G LTE+ caused interference at frequency of 1.475 MHz
- KPN temporary switching off LTE+ at station Ede was final prove

Topcon

Conducted their own tests to find the issues with their equipment


LOOKING INTO POSSIBLE SOLUTIONS

- Two types of attenuator
 - -20dB amplifier DC blocked
 - -40dB amplifier DC blocked
- Proposed new antenna
 - TPSCR.G5C choke ring with Cavity filter

Attenuator -40 dB with cooling TOPCON TPSCR.G5C 19

Attenuator -20 dB

TEMPORARY STATION

TEST-SCENARIOS

- 1. Replication of 06-GPS station Dordrecht
- 2. Replication without antenna splitter
- 3. Replication with addition of band filter compact
- 4. Replication with addition of band filter cooled
- 5. Replication with non-amplified antenna splitter
- 6. Replication with new antenna "TPSCR.G5C TPSH"

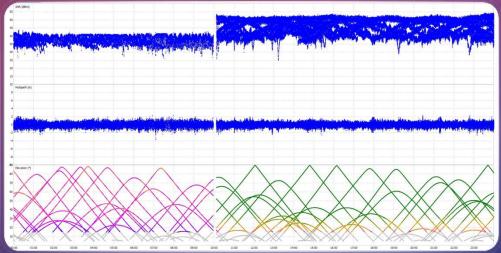
ANTENNA TPSCR.G5C TPSH

Only the proposed antenna by Topcon could mitigate the interference!

CAVITY FILTER MITIGATES NEAR BAND INTERFERNCE

TPSCR.G5C

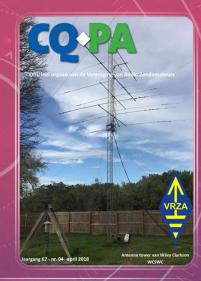
- Out of Band Rejection
 - <1050 MHz : -80 dB
 - 1051 1090 MHz : -60 dB (39 MHz)
 - 1160 1300 MHz : 0 dB (140 MHz) (L2/L3/L5)
 - 1370 1510 MHz : -60 dB (140 MHz)
 - 1540 1610 MHz : 0 dB (70 MHz) (L1)
 - 1670 1699 MHz : -60 dB (29 MHz)
 - > 1700 MHz
- : -80 dB


Too broad: Out of band rejection

TPSCR.G5

- Out of Band Rejection
 - <1000 MHz : -60 dB
 - 1001 1132 MHz : -60 dB (131 MHz)
 - 1160 1300 MHz : 0 dB (140 MHz) (L2/L3/L5)
 - 1332 1418 MHz : -40 dB (86 MHz)
 - 1515 1615 MHz : 0 dB (100 MHz) (L1)
 - 1718 1749 MHz : -40 dB (31 MHz)
 - > 1750 MHz : -60 dB

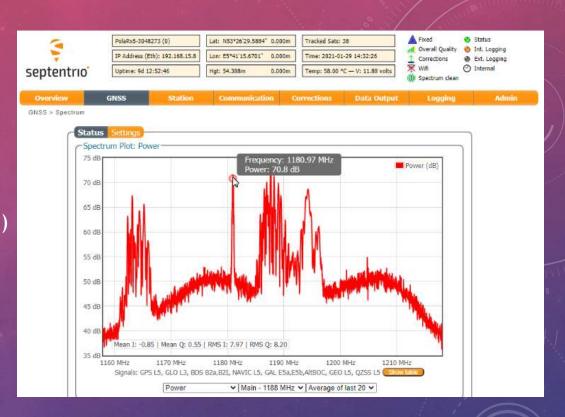
Small rejection

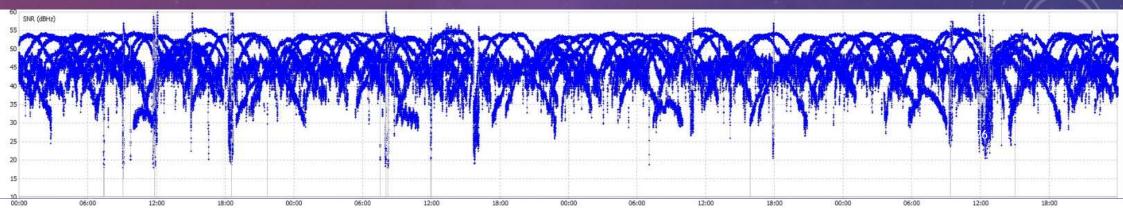


IMPLEMENTING SOLUTION

Antenna change at 28 stations Individual/group antenna calibration Change logs to partners

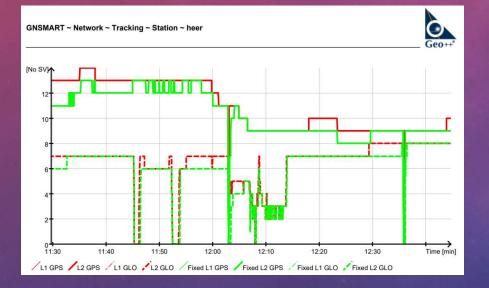
End of 2021 Topcon will have an external device for antennas with no inbuild filter.

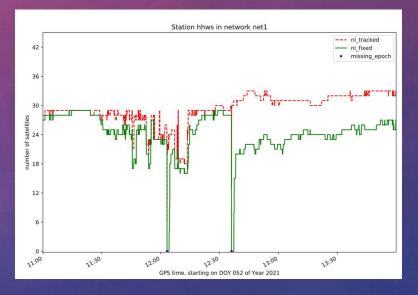



CASE 2: RADIO AMATEUR INTERFERENCE

SINGLE STATION RADIO INTERFERENCE

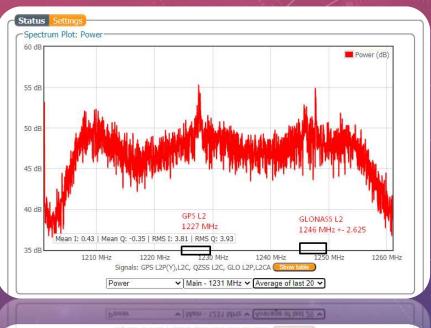
DISCOVERY OF INTERFERENCE

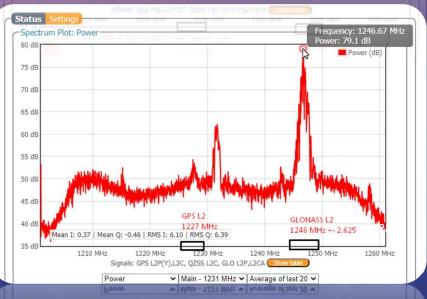

- Station Heerhugowaard
- Loss of fix in GNNET/GPPNET (GNSMART Geo++)
- Time depended, no exact schedule
- Only L2 of GPS & GLO affected

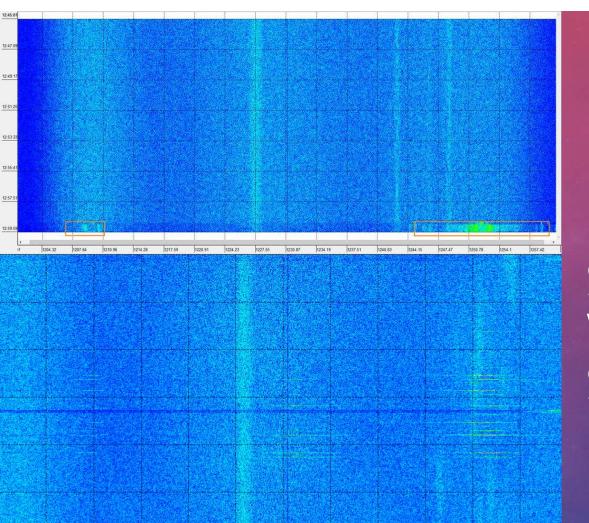


EFFECT ON RTK-CORRECTIONS

GNSMART v1 GNNET




GNSMART v2 GPPNET



SPECTRUM ANALYSES

Kanaal	GLO L1 MHz	GLO L2 MHz	PRN	Signaal	Freq. MHz
-7	1598.063	1242.938	10, 14	GPS L1	1575.42
-6	1598.625	1243.375		GPS L2	1227.60
-5	1599.188	1243.813		GPS L5	1176.45
-4	1599.750	1244.250	02, 06	GAL E1	1575.42
-3	1600.313	1244.688	18, 22	GAL E5a	1176.45
-2	1600.875	1245.125	09, 13	GAL E5b	1207.14
-1	1601.438	1245.563	12, 16	GAL E6	1278.75
0	1602.000	1246.000	11, 15	BDS B1	1561.10
1	1602.563	1246.438	01, 05	BDS B2	1207.14
2	1603.125	1246.875	20, 24	BDS B3	1268.52
3	1603.688	1247.313	01, 23		
4	1604.250	1247.750	17, 21		
5	1604.813	1248.188	03, 07		
6	1605.375	1248.625	04, 08		
7	1605.938	1249.063			

1234.37

1238.08

1230.67

1241.79

1245.5

1249.21

1208.42

1212.12

1215.83

1219.54

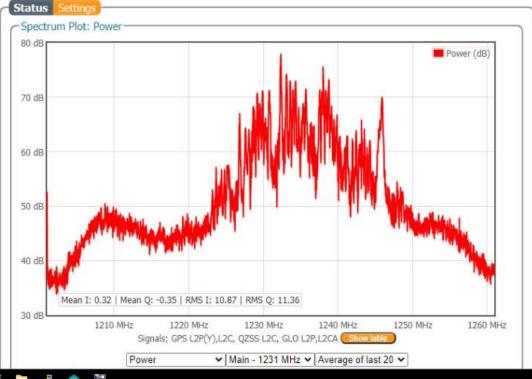
1223.25

1226.96

SPECTRUM ANALYSES WITH SEPTENTRIO SUPPORT

SPATIAL ANALYSES

- Using antenna registry and street view to find radio amateurs
- Contact regional radio amateur association
- Email contact and plan a meeting



RADIO AMATEUR ASSOCIATION SPECIALIZED IN VIDEO BROADCAST

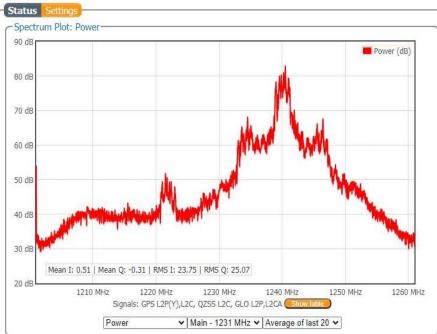
JOINING THEIR MEETING FOR INTERACTIVE SPECTRUM TESTING Share screen with members Radio amateur association.

Every user tests their frequency and signal strength

Life feedback, amount of interference shared

ANALYSIS AND CONCLUSION

• During life feedback session the amateurs tested their broadcast limitation


33

1245.98

•1 amateur used exactly GPS L2

1204.4

- •3 amateurs used GLONASS L2 to communicate
- Time-spectrum plot was shared afterwards
- Agreed to shift center frequency and lower power

INTERFERENCE RETURNED

Informing various radio amateur associations

At one radio amateur television station there was a single user sending at 1240MHz exactly over the GNSS antenna.

No Telecom Agency involved

Monitoring performance GNSS-station with RINEX logs and network-performance

Radio Amateurs all moved to 1258 MHz

CONCLUSIONS

Know normal GNSS SNR values and monitor receiver performance There is always some interference, only focus on problematic interference

Use social-network while investigating problem.

THANK YOU FOR YOUR ATTENTION !