Institut français des sciences et technologies des transports, de l'aménagement et des réseaux

CAPLOC: Combinaison de l'analyse d'images et la connaissance de la propagation des signaux pour la localisation

Cyril MEURIE, IFSTTAR/COSYS/LEOST cyril.meurie@ifsttar.fr

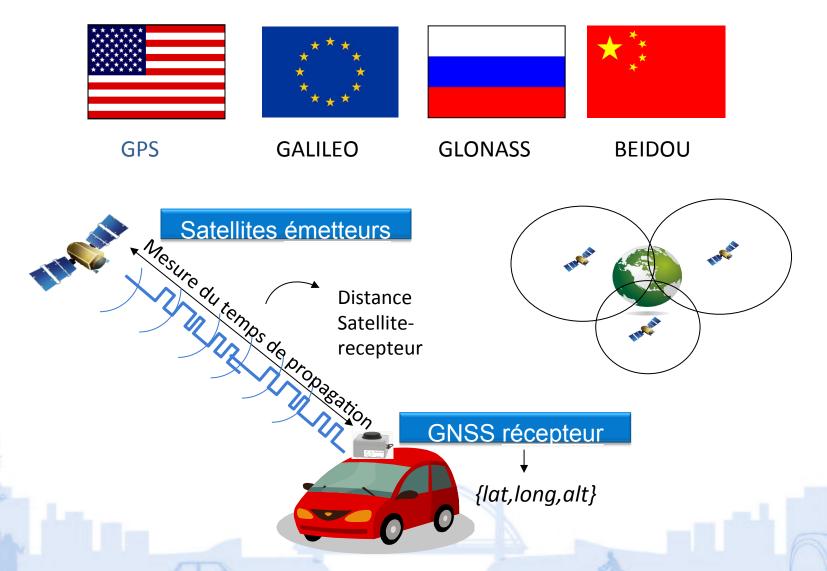
La localisation, au cœur des ITS Des besoins spécifiques / applications.

Pour le déploiement des SI et de signalisation (applications tramway ou fret ferroviaire), besoins exprimés :

« Réduire au minimum l'impact de l'implantation d'un système sur l'infrastructure »

« Forte réduction des coûts d'installation et d'exploitation »

Cahier des charges de la fonction « localisation »


Supprimer l'infrastructure

⇒ le satellite est candidat

Localisation précise avec dans certaines zones : précision < 2m avec une probabilité > 90%

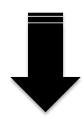
<u>Avantages pour le transport</u> : positionnement absolu, continu, global, peu couteux, infrastructure externe, ...

Le GNSS (Global Navigation Satellite System)

Le GNSS - Les limites en milieu urbain

Le GPS: une solution efficace!

Mais... pas toujours suffisamment performante en environnement urbain (performances dégradées par les obstacles environnants : bâtiments, végétation, ...)



Le GNSS - Les limites en milieu urbain

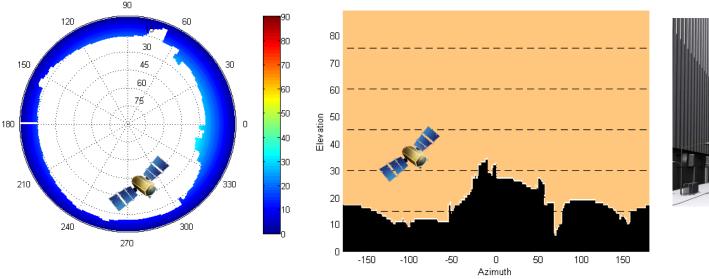
Quelques techniques utilisées :

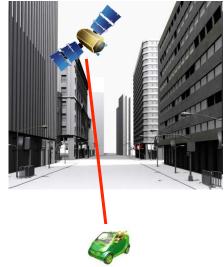
- Compenser l'impact des multi-trajets (systèmes multicapteurs)
- 2. Limiter l'impact des multi trajets (techniques de « mitigation »)
 - o traitement d'antennes,
 - o amélioration et augmentation du nombre des corrélateurs,
 - o détection et exclusion des erreurs...

Techniques d'hybridation GNSS et Image/Vidéo

Notre proposition scientifique

Une solution bas coût, sans infrastructure au sol, reposant sur les signaux satellitaires et une connaissance de l'environnement local de propagation de ces signaux


Concept PREDISSAT (2002) breveté en 2007



Connaître en temps réel les états de propagation des signaux pour corriger les imprécisions

Le concept CAPLOC

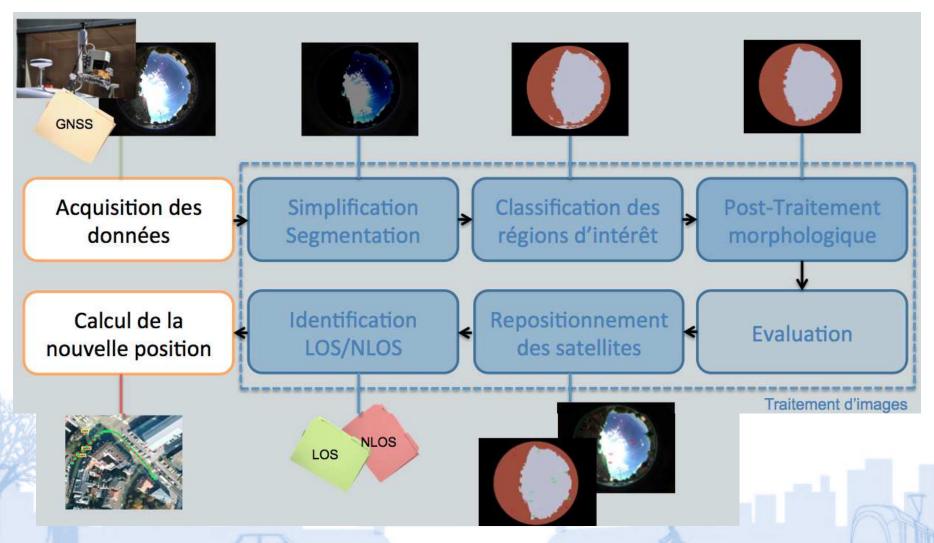
Projet PREDIT débuté en 2010 (fin janvier 2014)
Partenaires : IFSTTAR-LEOST (porteur) et UTBM, IRETS-SET

Cette connaissance de l'environnement donne une information sur la qualité de la mesure et peut être offerte par le traitement d'images/vidéo

Organisation scientifique de CAPLOC

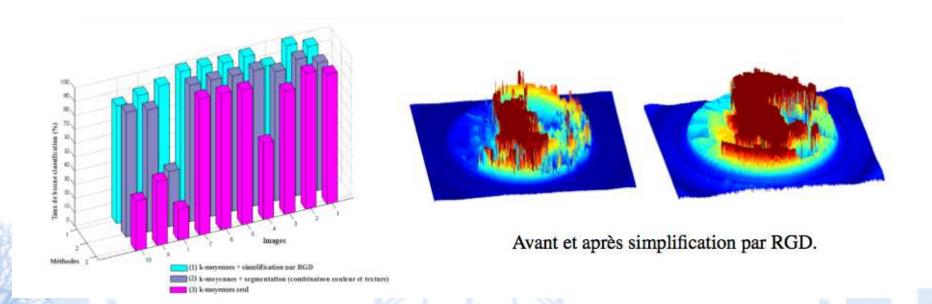
1. Détecter et caractériser les obstacles perturbant la réception des signaux satellitaires grâce à l'utilisation d'une caméra orientée vers le ciel

2. Développer un système de reconstruction 3D de l'environnement situé autour d'un véhicule grâce à un système multi-caméras embarqué.


3. Améliorer la précision de la position grâce à la connaissance de l'environnement offerte par 1. et 2.

Campagne d'acquisition Belfort, juin 2010

Hétérogénéité des données (surexposition, végétation, canyon urbain, soleil, ombre, changement de luminosité)

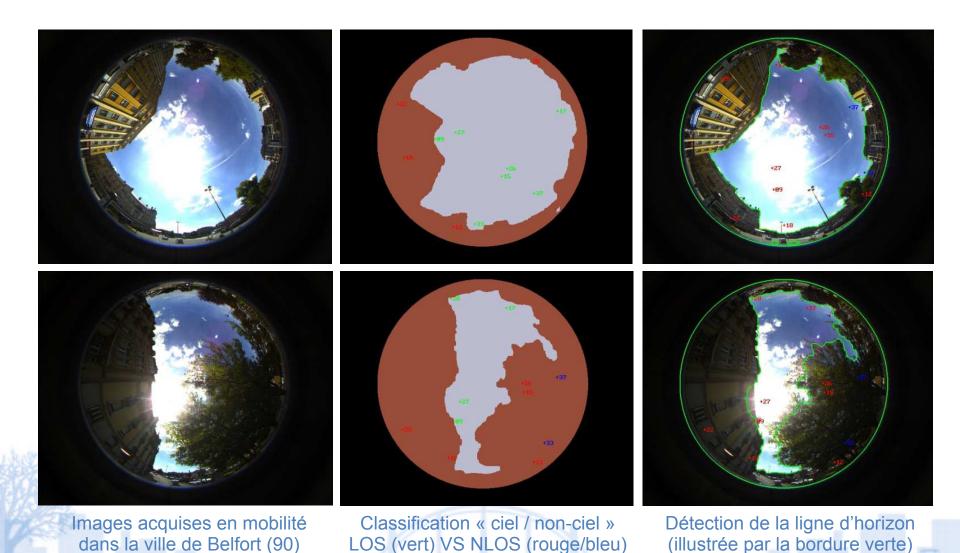

Stratégie de classification des signaux GNSS

Détection du ciel/non-ciel + ligne d'horizon

Stratégie basée sur une simplification de l'image par RGD

- + classification pixellaire adaptée (Thèse de D. ATTIA 12):
 - Simplification par RGD (optimisation paramètre de contraste)
 - Classification pixellaire (non)supervisée (choix du classifieur)
 - Post-traitement morphologique (élimination petites régions)

Détection du ciel/non-ciel + ligne d'horizon

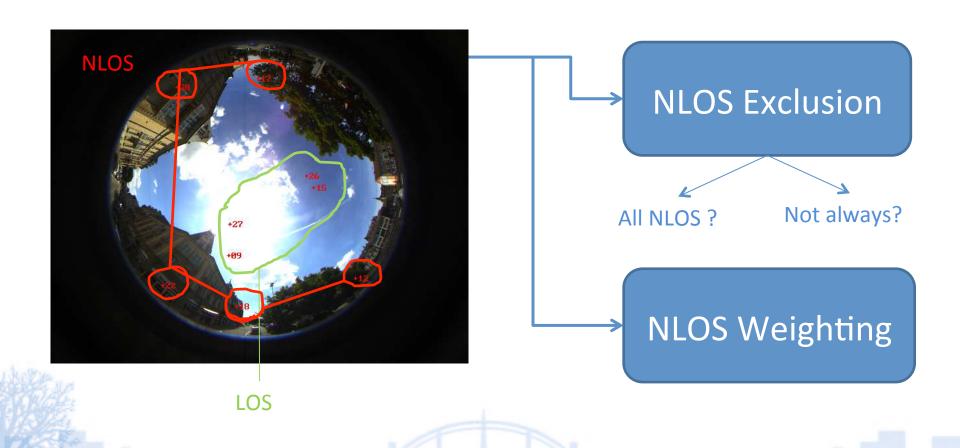

	Median		RGD	
	P(%)	W	P(%)	Н
	Classification non-supervisée			
	Fisher			
Rouge	86.9	8	91.6	100
Vert	92.9	8	93.9	50
Bleue	98.1	8	97.2	25
Moyenne (R,G,B)	93.3	8	94.1	50
	KMlocal			
EZHybrid	96.5	8	96.4	25
Hybrid	96.5	8	96.3	25
Loyds	96.5	8	96.5	25
Swap	95.7	8	96	25
		C-Mo	yennes	
m=1	97.7	8	96.2	25
m=1.25	97.6	8	97.3	25
m=1.5	97.5	8	97.5	25
m=1.75	97.2	8	97.9	25
m=2	96.9	8	97.9	25
	SRM			
	97	6	97	100
	Classification supervisée			
	Bayes			
	97.5	8	97.3	100
	Kppv			
nbKppv=4	97	6	98	25
nbKppv=6	97.5	8	98.1	25
	SVM			
	88.8	6	97.1	25

	Temps de calcul (s)	
	Médian	RGD
Fisher	0.035	0.037
KMlocal	0.41	0.45
Fuzzy Cmeans	3.30	3.34
SRM	0.35	0.47
Bayes	0.34	0.47
Kppv	14.3	15.4
SVM	5	4.04

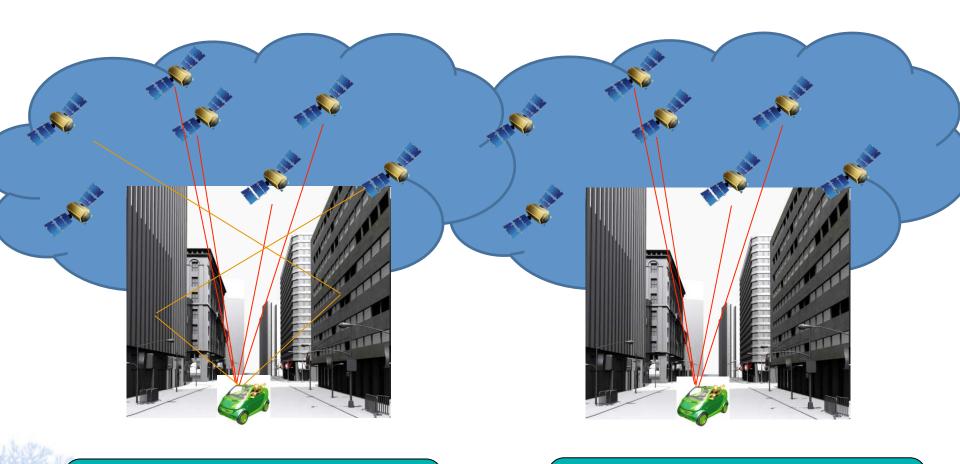
TABLE: Temps de calcul (s) en fonction du couple méthode de simplification/algorithme de classification.

- Meilleurs filtres Median et RGD (TBC = 98.1%).
- Meilleur classifieur Fisher (35ms)

Détection du ciel/non-ciel + ligne d'horizon

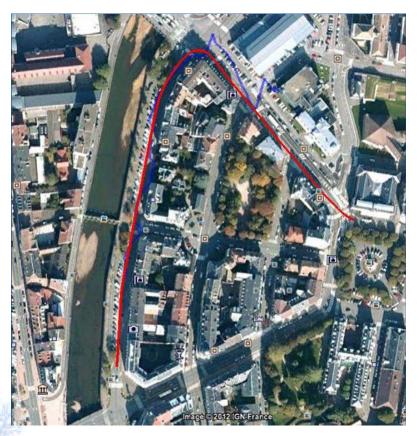

Organisation scientifique de CAPLOC

1. Détecter et caractériser les obstacles perturbant la réception des signaux satellitaires grâce à l'utilisation d'une caméra orientée vers le ciel

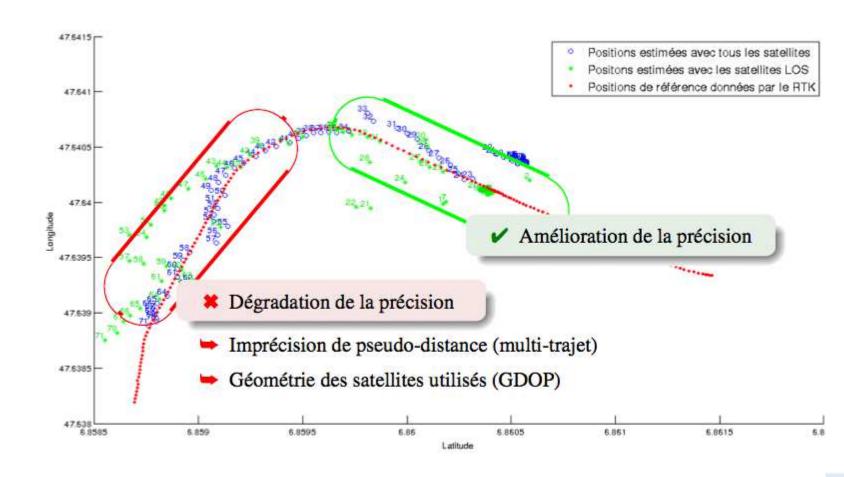

2. Développer un système de reconstruction 3D de l'environnement situé autour d'un véhicule grâce à un système multi-caméras embarqué.

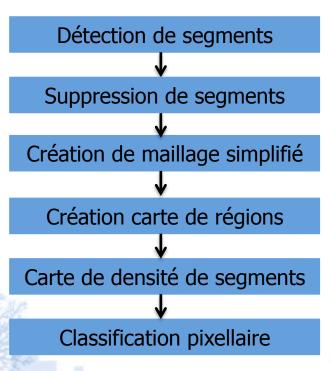
3. Améliorer la précision de la position grâce à la connaissance de l'environnement offerte par 1. et 2.

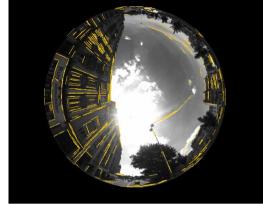
Etat des satellites et utilisation?

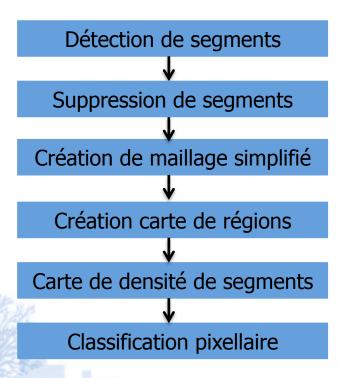

Localisation – 1ère solution testée

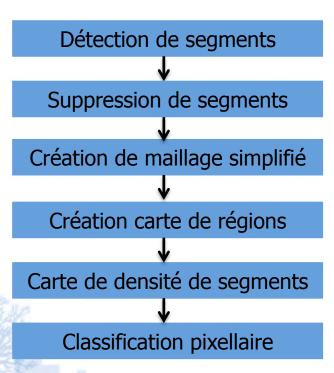
Utiliser tous les satellites reçus

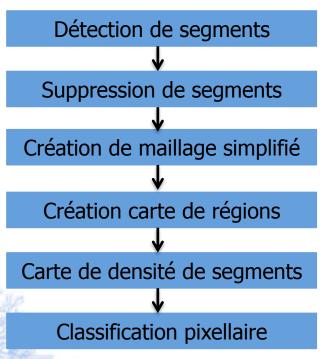

Exclure les satellites reçus après réflexion (NLOS)


Site d'essai - Campagne d'acquisition

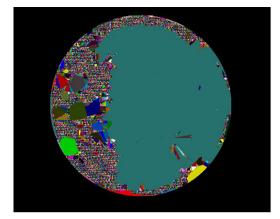

- GPS receiver septentrio : 1Hz
- Camera: 27 Hz
- GPS RTK (reference): 20 Hz
- Lieu : Ville de Belfort (France)
- Trajet : lignes droites + virage
- Temps: 71 seconds
- 71 points GPS / 175 images

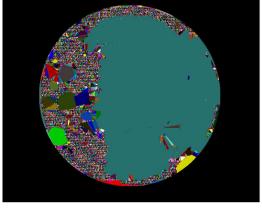

Résultats de localisation (ciel/non-ciel)

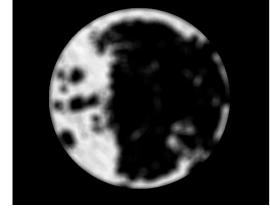


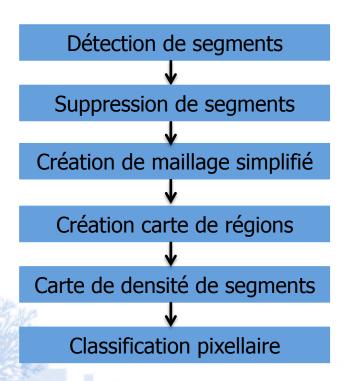


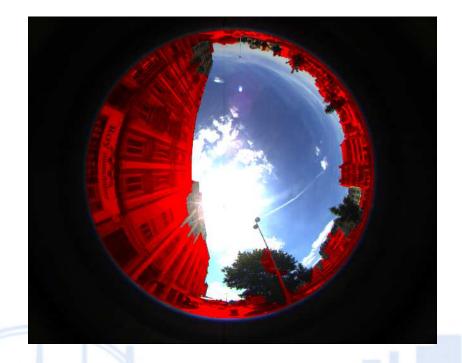












Résultats de localisation (ciel/bâti/végétation)

		Mesures d'erreur (m)		r (m)
Stratégies		Moy	Max	σ
Tous l	Tous les satellites		33.07	12.75
Tri de satellites LOS	Ciel et choix arbitraire	10.5		12.14
	Ciel et choix optimiste	10.25	59.23	11.92
	Ciel-Végétation et choix arbitraire	10.69		11.79
	Ciel-Végétation et choix optimal	10.7		11.98
Seuillage du DOP	Ciel et choix arbitraire	5.73		7.66
	Ciel et choix optimiste	5.59	32.92	7.52
	Ciel-Végétation et choix arbitraire	5.85		7.57
	Ciel-Végétation et choix optimiste	5.6		7.5

Résultats de localisation (ciel/non-ciel)

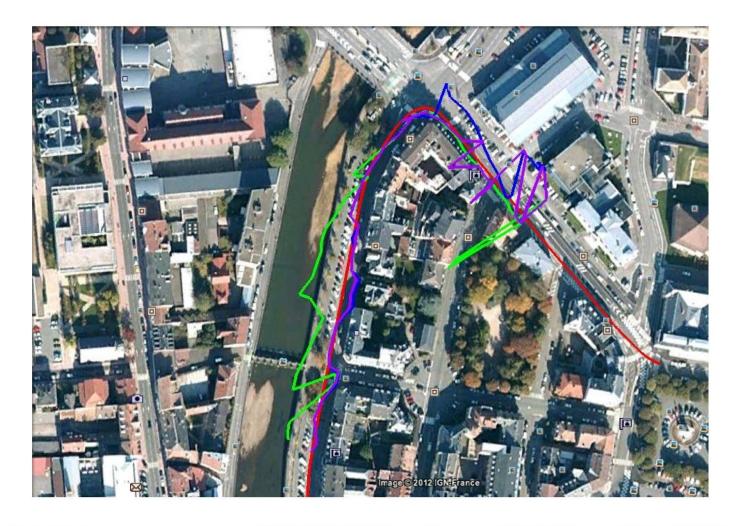
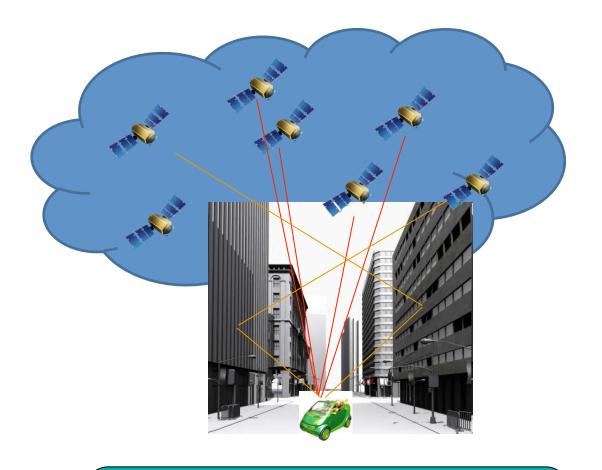
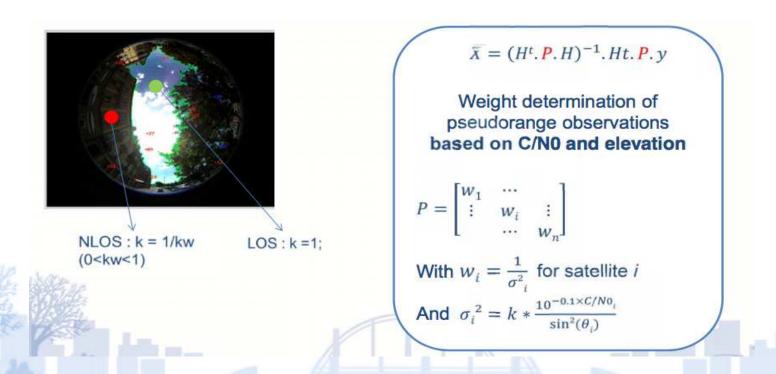



FIGURE: Trajectoires obtenues: (GPS-RTK, TOUS satellites, satellites LOS et seuillage GDOP).

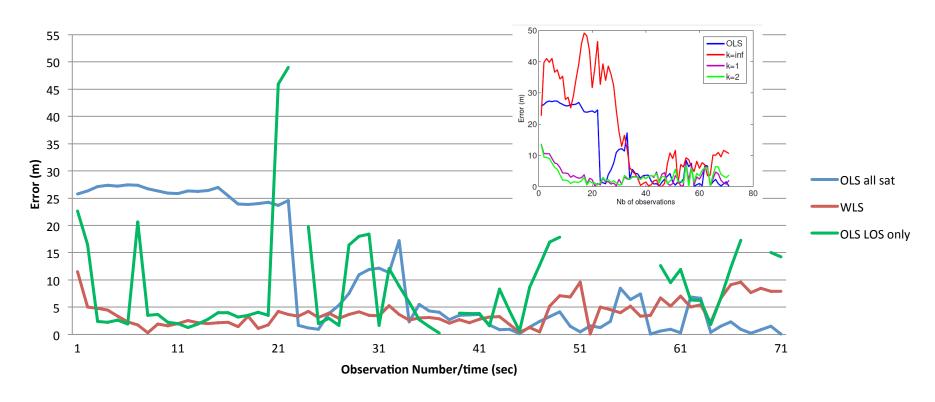
Localisation – 2^{ème} solution testée



Pondérer différemment les satellites avec des signaux directs (LOS=1) ou réfléchis (NLOS<1)

Les moindres carrés pondérés

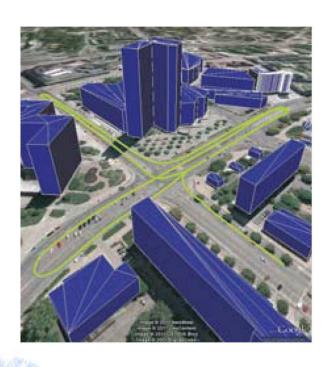
Constat : les modèles sont basés sur l'angle d'élévation et/ou sur le rapport signal sur bruit (C/N0), MAIS... en pratique :


- NLOS n'ont pas tous un faible SNR
- LOS n'ont pas tous une élévation élevée

Résultats de localisation – 2ème solution

Résultats de localisation – 2ème solution

	Ordinary Least square	NLOS exclusion/ OLS	WLS (k=2)
Mean	10.58 m	8.7 m	3.95 m
STD DEV	10.82 m	9.64 m	2.42 m
RMS	15.074 m	12.9 m	4.64 m
Unavailability	-	12 points (17%)	-


Organisation scientifique de CAPLOC

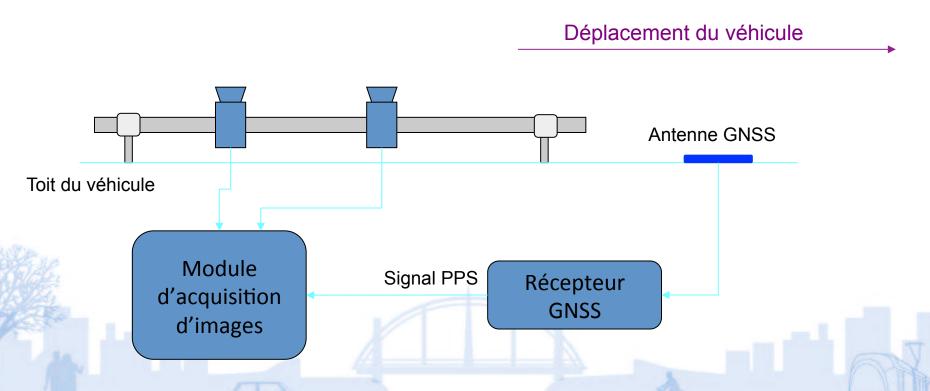
1. Détecter et caractériser les obstacles perturbant la réception des signaux satellitaires grâce à l'utilisation d'une caméra orientée vers le ciel

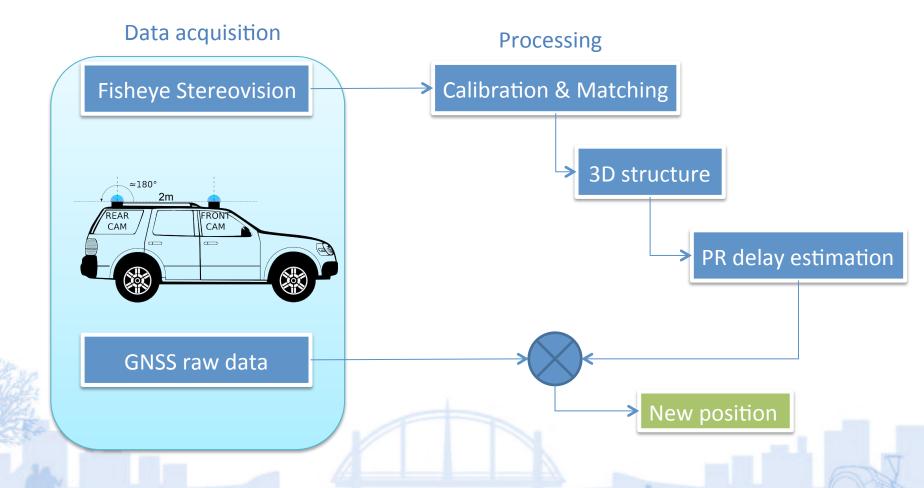
2. Développer un système de reconstruction 3D de l'environnement situé autour d'un véhicule grâce à un système multi-caméras embarqué.

3. Améliorer la précision grâce à la connaissance de l'environnement offerte par 1. et 2.

Utilisation des modèles 3D

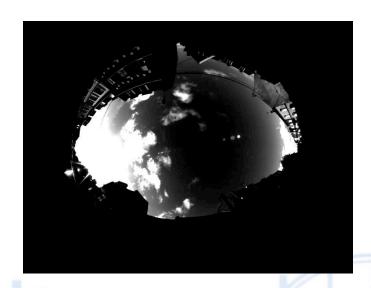
<u>Littérature</u>: Utilisation de modèle 3D urbain préenregistrés [Obst2012], [Bourdeau2012], [Peyret2011].

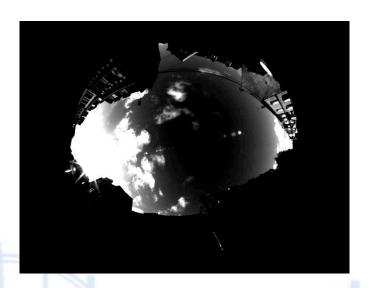

- Les modèles doivent être mis à jour : les structures peuvent changer temporairement/définitivement.
- Le modèle d'une ville représente un volume conséquent de données à stocker (offline), transférer (online).


Construire un modèle 3D dynamique lorsque l'on "se déplace" en urbain.

Système de reconstruction 3D

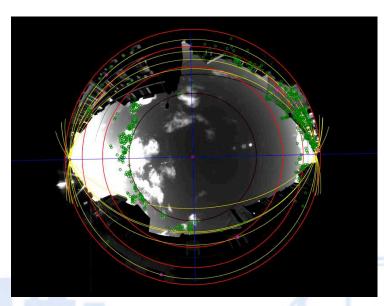
Conception d'une plate-forme expérimentale d'acquisition d'images fisheye stéréoscopiques

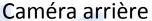


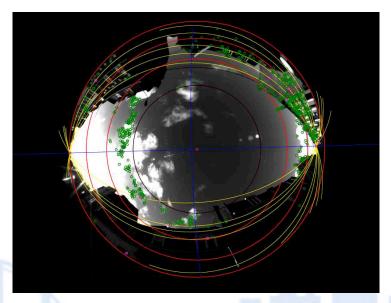

Un modèle 3D dynamique ... pour la correction des pseudo-distances

Acquisitions stéréoscopiques

- Couple d'images stéréoscopiques fish-eye.
- 3296 x 2520 pixels (diametre approx. 2500 px)
- Enregistrement : 10 fps
- Timestamp avec horloge GPS

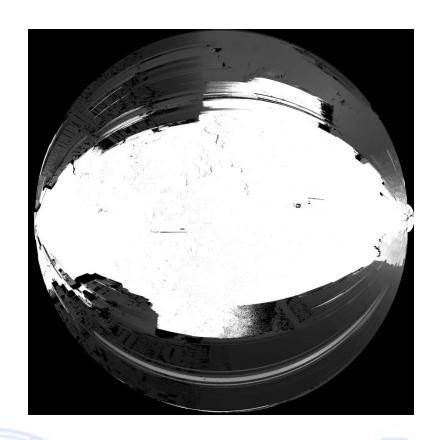



Caméra arrière

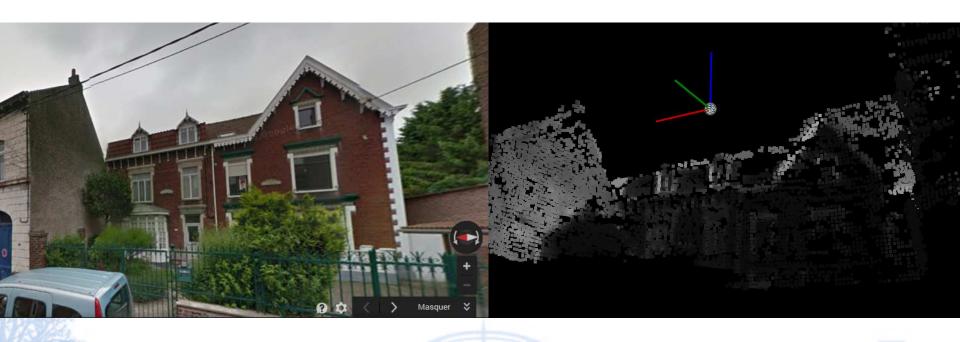

Caméra avant

Calibration automatique stéréoscopique

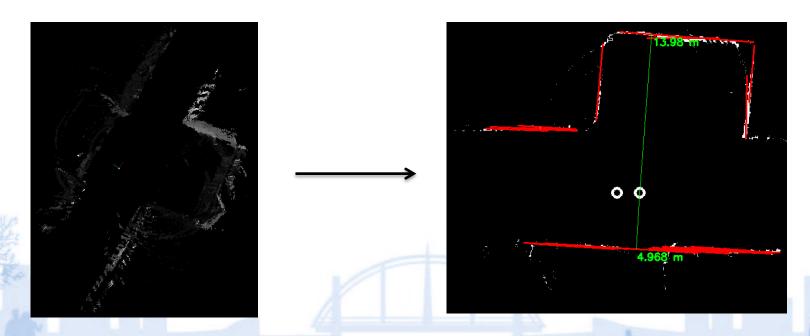
- Self-calibration
- Détection/matching de points d'intérêt (SIFT)
- RANSAC (RANdom SAmple Consensus) pour estimer la matrice fondamentale
- Rafinement avec algorithm Levenberg-Marquardt



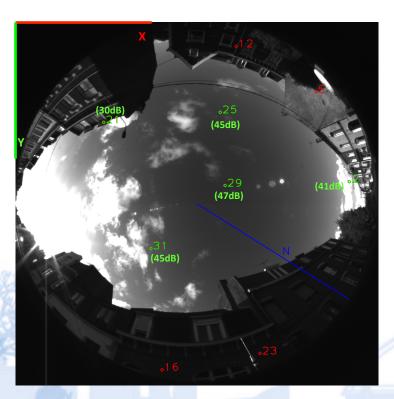
Caméra avant

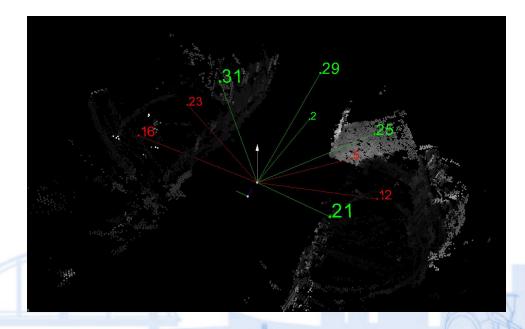

Mise en correspondance stereoscopique

- Carte de disparité dense.
- Algorithme de matching par programmation dynamique [Forstmann04]
- Exploitation de la contrainte épipolaire géométrique sur un modèle sphérique.


Reconstruction du nuage de points 3D

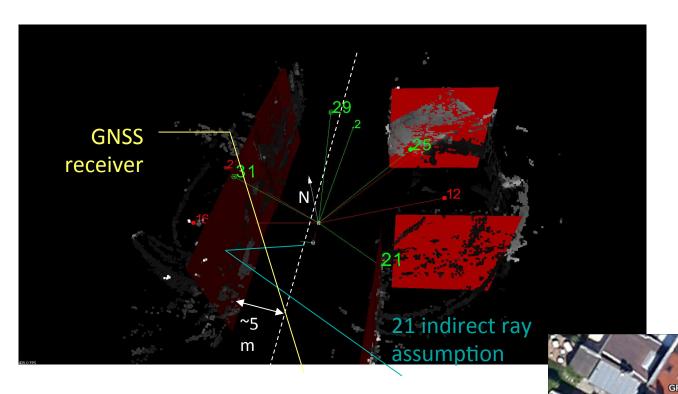
Nuage de points 3D centré / stéréoscope


Detection de segments


- Nuage de points avec une vue de dessus
- Détection de murs (segments).
- Algorithme de transformée de Hough [Matas2000].
- Calcul des distances entre le récepteur et les obstacles

Reprojection des satellites

- Estimation et suivi du cap du véhicule
- Repositionnement des satellites sur la caméra avant
- rouge: signal bloqué, vert: signal direct/réfléchi.
- GDOP = 3.07 (bonne distribution spatiale)



Nuage de points

Résultats de localisation – 3^{ème} solution

Méthode utilisée pour le calcul de la nouvelle position : D. Bétaille et al., « A New Modeling Based on Urban Trenches to Improve GNSS Positioning Quality of Service in Cities », IEEE Intelligent Transportation Systems Magazine, Vol 59, July 2013.

R rectification (2D)

Conclusion et perspectives

Proposition d'hybridation GNSS/Image permettant d'améliorer la précision de la position en milieu urbain :

- Détection ciel/bâtiments/végétation et ligne d'horizon
- Position améliorée par exclusion NLOS et seuillage DOP
- Position améliorée par moindres carrés pondérés sur TOUS
- Construction d'un modèle 3D + correction des pseudo distances

- Tester les solutions sur un jeu de données plus important
- Détection la végétation par une analyse de la couleur/texture.
- Amélioration de la pondération des signaux
- Determination d'un coefficient d'absorption/reflection par type de surface rencontrée et "plaquée" dans le modèle 3D.
- Prise en compte de la complexité géométrique du canyon.

Références

- Attia, D., Meurie, C., Ruichek, Y., Marais, J., Counting of satellites with direct GNSS signals using fisheye camera: A comparison of clustering algorithms. Pages 712, Washington D.C., USA, 2011. 14th IEEE Intelligent TransportationSystems Conference (ITSC'2011).
- Betaille, D.; Peyret, F.; Ortiz, M.; Miquel, S.; Fontenay, L., "A New Modeling Based on Urban Trenches to Improve GNSS Positioning Quality of Service in Cities," Intelligent Transportation Systems Magazine, IEEE, vol.5, no.3, pp.59,70, Fall 2013
- Bourdeau, A.; Sahmoudi, M. & Tourneret, J.-Y. Constructive use of GNSS NLOS-multipath: Augmenting the navigation Kalman filter with a 3D model of the environment Information Fusion (FUSION), 2012, 2271-2276
- Forstmann, S.; Kanou, Y.; Ohya, J.; Thuering, S. & Schmitt, A. Real-Time Stereo by using Dynamic Programming Computer Vision and Pattern Recognition Workshop, 2004
- Matas, J.; Galambos, C. & Kittler, J. Robust Detection of Lines Using the Progressive Probabilistic Hough Transform computer Vision and Image Understanding, 2000, 78, 119 137
- Marais, J. Localisation de mobiles terrestres par satellites: mise en oeuvre d'outils permettant l'analyse de l'influence des conditions de propagation et des effets de masques sur la disponibilité du service offert, PhD Thesis, Univ Lille1 - Sciences et Technologies, 2002
- Marais, J., Meurie, C., Attia, D., Ruichek, Y., Flancquart, A., Toward accurate localization in guided transport: combining GNSS data and imaging information, Transportation research Part C: Emerging technologies, Vol 43 (2), pages 188-197, June 2014
- Meurie, C., Ruichek, Y., Cohen, A., Marais, J., An hybrid an adaptive segmentation method using color and textural information, SPIE Electronic Imaging 2010 Image Processing: Machine Vision Applications III, Proc. of Electronic Imaging, SPIE Vol. 7538, 75380R, 11 pages, California USA, January 2010.
- Moreau, J., Ambellouis, S., et Ruichek, Y. 3D Modeling of Urban Environments for Enhancing GPS Localization's Accuracy. Dans Transport Research Arena (TRA'2014).
- Moreau, J., Ambellouis, S., et Ruichek, Y. Equisolid Fisheye Stereovision Calibration and Point Cloud Computation. Dans ISPRS Conference on Serving Society with Geoinformatics (ISPRS SSG'2013).
- Moreau, J., Ambellouis, S., et Ruichek, Y. 3D reconstruction of urban environments based on fisheye stereovision. Dans Eighth International Conference on Signal Image Technology and Internet Based Systems (SITIS'2012)
- Obst, M.; Bauer, S. & Wanielik, G. Urban multipath detection and mitigation with dynamic 3D maps for reliable land vehicle localization Position Location and Navigation Symposium (PLANS), 2012 IEEE/ION, 2012, 685-691
- Peyret, F.; Bétaille, D. & Mougel, F. Non-Line-Of-Sight GNSS signal detection using an on-board 3D model of buildings ITS Telecommunications (ITST), 2011 11th International Conference on, 2011, 280-286
- Tay, S., Marais, J., Weighting models for GPS Pseudorange observations for land transportation in urban canyons, 6th European Workshop on GNSS Signals and Signal Processing, December 5-6, 2013, Munich

Merci de votre attention

Contacts

IFSTTAR/COSYS/LEOST

20 rue E. Reclus

BP 70 317

59650 Villeneuve d'Ascq cedex,

France

www.ifsttar.fr

- GNSS Localisation
 - Juliette Marais juliette.marais@ifsttar.fr
- Détection ciel/végétation/bâtiments
 - Cyril Meurie cyril.meurie@ifsttar.fr
 - Yassine Ruichek yassine.ruichek@utbm.fr
- Modèle 3D
 - Julien Moreau julien.moreau@ifsttar.fr
 - Sébastien Ambellouis
 sebastien.ambellouis@ifsttar.fr
 - Yassine Ruichek yassine.ruichek@utbm.fr
- Système d'acquisition
 - Amaury Flancquart amaury.flancquart@ifsttar.fr