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AI and Remote Sensing

Jocelyn Chanussot

Future INRIA project team: 
ReSeT
Remote Sensing Team @ Inria



Remote sensing

Sensing: Observing, measuring, monitoring

Remotely: from a distance (close range… or from far away)

Platforms: 

satellites

airplanes

UAV (drones) and more

Sensors:

Optical

Hyperspectral

Radar

Lidar and more



Remote sensing

1858 vue aérienne de Paris (1866)



Remote sensing

1903, système développé par Julius Neubranner



Remote sensing

Illustration @FlypixAI



Remote sensing



Remote sensing

Geometrical Resolution: 0.6 [m]
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Conclusion:

We have A LOT of multimodal, highly heterogeneous, data
New acquisitions and archives



Artificial intelligence
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Artificial intelligence

Artifical Intelligence is not that big, scary thing in the future.
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Artificial intelligence

Artifical Intelligence is not that big, scary thing in the future.
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Artificial intelligence
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Conclusion:

We have A LOT of AI algorithms.
High Performance Computing



AI and remote sensing
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AI and remote sensing
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Monitoring of wildfires



AI and remote sensing
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Monitoring of floods



AI and remote sensing
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Monitoring of floods



Conclusion: AI and deep learning: 
a game changer for the analysis of remote sensing data

- A lot of data
- High performance computing
- Advanced algorithms (optimization)

Remote sensing differs from standard computer vision:
Not a lot of annotated data
-> importance of self-supervised techniques / few shot learning

Observations = physical quantities
-> importance of the interplay between physics and AI

AI and remote sensing



DASNet: Dual Attentive Fully Convolutional Siamese Networks for Change Detection
in High-Resolution Satellite

SNUNet-CD: A Densely Connected Siamese Network for Change Detection of VHR Images
LANet: Local Attention Embedding to Improve the Semantic Segmentation 

of Remote Sensing Images
TEMDnet: A Novel Deep Denoising Network for Transient Electromagnetic Signal 

With Signal-to-Image Transformation
SemiCDNet: A Semisupervised Convolutional Neural Network for Change Detection

in High Resolution Remote-Sensing Images
SCAttNet: Semantic Segmentation Network With Spatial and Channel Attention Mechanism

for High-Resolution Remote Sensing Images
MAP-Net: Multiple Attending Path Neural Network for Building Footprint Extraction 

From Remote Sensed Imagery
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A few recent papers published in IEEE TGRS (just a drop in the ocean…)

AI and remote sensing



SwinSUNet: Pure Transformer Network for Remote Sensing Image Change Detection
DLA-MatchNet for Few-Shot Remote Sensing Image Scene Classification
DABNet: Deformable Contextual and Boundary-Weighted Network for Cloud Detection

in Remote Sensing Images
SSR-NET: Spatial–Spectral Reconstruction Network for Hyperspectral and 

Multispectral Image Fusion
TransUNetCD: A Hybrid Transformer Network for Change Detection

in Optical Remote-Sensing Images
BockNet: Blind-Block Reconstruction Network With a Guard Window

for Hyperspectral Anomaly Detection
F3Net: Adaptive Frequency Feature Filtering Network for Multi-modal Remote Sensing

Image Registration
EMYNet-BDD: EfficientViTB Meets Yolov8 in the Encoder–Decoder Architecture for Building 

Damage Detection Using Postevent Remote Sensing Images
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AI and remote sensing



Jane/JohnDoeNet: 
a great architecture for a critical application using specific remote sensing data

Your next publication:

AI and remote sensing



Move from John/JaneDoeNet to

- Large scale pre-trained AI models
- Able to address a wide array of tasks
- Finetuneable

- A lot of data
- High performance computing
- Advanced algorithms (optimization)

Foundation models

AI and remote sensing
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Foundation models: specific models for remote sensing data

AI and remote sensing
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Foundation models: specific models for remote sensing data

AI and remote sensing
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Foundation models: 
specific models
for remote sensing data

AI and remote sensing
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Foundation models: specific models for remote sensing data

Foundation models refer to large-scale, pretrained models that provide

a robust starting point for various downstream tasks across

different domains. These models leverage extensive datasets and advanced
architectures, enabling them to capture complex patterns and features that can be
fine-tuned for specific applications with minimal additional training.

AI and remote sensing
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Foundation models: specific models for remote sensing data

Foundation models face the usual challenges:

- Need for high-quality and diverse training data

- Need for significant computational resources

- Need for effective domain adaptation for specific applications

AI and remote sensing
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Foundation models: Methodologies

Self-supervised learning training strategies:

The model learns part of the input data from other parts of the input data
-> reduces the need for large labeled datasets.

- Contrastive learning:
Learns representations by comparing different views (data augmentation) of
the same data point

- Predictive coding:
Learns to predict missing (masked) parts of the data from the observed parts

SSL methods: MoCo, SimCLR, BYOL, DINO…

AI and remote sensing



Nassim Ait Ali Braham, Conrad Albrecht, Julien Mairal, Jocelyn Chanussot, Yi Want, Xiao Xiang Zhu

EO Data Science, Remote Sensing Technology Institute, DLR

Data Science in Earth Observation, Technical University of Munich, Germany

Univ. Grenoble Alpes, Inria, CNRS, Grenoble INP, LJK, 38000 Grenoble, France

SPECTRAL EARTH: TRAINING HYPERSPECTRAL FOUNDATION 
MODELS AT SCALE
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Motivation
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▪ A lot of research on foundation models for 

MSI: SatMAE, ScaleMAE, Prithvi, DOFA, 

SkySense, etc. 

▪ Less research on foundation models in HSI

▪ No suitable dataset for pre-training 

hyperspectral foundation models

▪ Contribution: SpectralEarth a globally 

distributed dataset, pre-trained models and 

benchmark

https://doi.org/10.48550/arXiv.2408.08447
45

https://doi.org/10.48550/arXiv.2408.08447


SpectralEarth: A large-scale HSI dataset
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• Based on EnMAP imagery

• 30m resolution, 202 bands

• ~538,974 patches, 128x128 pixels. 

• ~415,153 unique 
locations

• ~73,000 locations with > 
1 timestamp

• Sampled from 11,636 
tiles

• ~3.3 TB of data

• Mostly cloud free
Geographical distribution of SpectralEarth
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Models
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▪ Network Architectures

▪ Simple variation of classical CNN 

and Vision Transformer 

architectures 

▪ 1D convolutions to extract

spectral features

▪ Models ranging from 22M to 1.1B

parameters

▪ 3 SSL Algorithms

▪ > 10 pre-trained models

Backbone architectures
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AI and Remote Sensing



AI and Remote Sensing

Next challenges ?
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Future directions: multimodal data integration

Multimodal
Foundation Model

AI and Remote Sensing
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AI and Remote Sensing

Future directions: multimodal data integration



AI and Remote Sensing

Conclusion and next challenges:

Multi-scale / multi-modal / multi-temporal integration

Foundation models

Lightweigth / frugal AI

Explainable AI

Physical modeling



Thank you for your attention.
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Future directions: interpretable foundation models

Interpretable foundation models as decryptor peering into Earth system
Chenyu Li et al

Discovering what interactions drive 
the model’s predictions?

Verifying why certain features are 
instrumental in driving model’s decision-
making process?

Assessing how the effectiveness of decisions
is validated by real-world data?



(iii) areas of research

Applications in radioastronomy (A&A)



(iii) areas of research
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Foundation models: Methodologies

Self-supervised learning training strategies:

AI and remote sensing



Labeled vs. Unlabeled Data in EO

▪ Deep Learning requires annotated data

▪ Labeled data is rare
▪ Costly to obtain
▪ Tedious annotation process

▪ Unlabeled data is abundant 
▪ Satellite archives with Petabytes of data

How to exploit unlabeled data for deep learning 
with hyperspectral imagery? 

Self-Supervised Learning
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Self-Supervised Learning

Overview of Self Supervised Learning*

*Wang, Yi, et al. "SSL4EO-S12: A large-scale multimodal, multitemporal dataset for self-supervised learning in Earth observation 
[Software and Data Sets]." IEEE Geoscience and Remote Sensing Magazine 11.3 (2023): 98-106.

▪ Goal

▪ Obtain training feedback from the data itself

▪ Learn representations in a self-supervised 
fashion

▪ no human annotation

▪ Why?

▪ A pre-trained model can be transferred to 
downstream tasks

▪ Improve accuracy and label efficiency
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RS in Grenoble

East Coast (Goddard)

West Coast (JPL)

https://www.shanghairanking.com/



RS in Grenoble



RS in Grenoble





•

•



~ 2500 km² d’annotations 
=> Applicable sur le territoire national > 500 000 km²







ANIMER DES ÉCOSYSTÈMES IA
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INNOVATION & AMELIORATION DES MODELES





CGDD/SRI/Ecolab 08/01/2026
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En 2025

• Data centers = 1,5% de consommation mondiale en 

électricité, soit 415 TWh

• Croissance de 12% par an depuis 5 ans

Prospection pour 2030 

• Centres de données = 3% de consommation mondiale 

en électricité, soit 945 TWh

• Croissance de 30% par an (adoption de l’IA)

Agence Internationale de l’énergie : Energie et IA (2025)

Consommation totale d'électricité des centres de données par type 

d'équipement et par type de centre de données, 2005- 2024



La filière centres de données justifie les 

infrastructures fossiles

• Relance massive des infrastructures fossiles (gaz)

• Annulation de fermeture programmée de centrales à 

charbon

Et l’IA dans tout ça ?

• En 2025, 15% des usages en centre de données

• Prédiction pour 2030 : 55%

Shift Project : Intelligence artificielle, données, calculs : quelles infrastructures dans un monde décarboné (2025)
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