Observation aéroportée par réflectométrie GNSS et Positionnement par la phase

Serge Reboul

Laboratoire d'Informatique Signal et Image de la Côte d'Opale Université du Littoral Côte d'Opale

GT GNSS & positionnement, 16 octobre 2024

PLATEFORME RADAR GNSS, LIDAR, SONAR ACOUSTIQUE

Laboratoire sur le site de Calais

Salle de manipulation de la plateforme au Laboratoire

2

Salle de manipulation de la plateforme à l'EILCO

EQUIPEMENTS

Laboratoire d'Informatique Signal & Image de la Côte d'Opale

ALTIMÉTRIE PAR LE CODE

J-C KUCWAJ, G. STIENNE, S. REBOUL, J. -B. CHOQUEL, M. BENJELLOUN, Accurate pseudo-range estimation by means of code and phase delay integration : Application to GNSS-R Altimetry, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing (JSTARS), 9(10), pp. 4854-4864, 2016.

M.A. RIBOT, J-C KUCWAJ, C. BOTTERON, S. REBOUL, G. STIENNE, J. LECLERE, J. -B. CHOQUEL, P.-A. FARINE, M. BENJELLOUN, **Normalized GNSS** Interference Pattern Technique for Altimetry, Sensors, 14, pp. 10234-10257, 2014. Article réalisé en collaboration avec l'EPFL.

ALTIMÉTRIE PAR LA PHASE

Reflectometry approach

Buoy approach

$$\delta_n^s = (N_{A2}\cos\theta_n^s\cos Az_n^s + E_{A2}\cos\theta_n^s\sin Az_n^s - h\sin\theta_n^s) + \xi_n^s$$
$$y_n^s = \left[\frac{2\pi}{\lambda}(N_{A2}\cos\theta_n^s\cos Az_n^s + E_{A2}\cos\theta_n^s\sin Az_n^s - h\sin\theta_n^s) + \xi_n^s\right]mod(2\pi)$$

7

$$y_n^s = \left[\frac{2\pi}{\lambda}\left(N_{A2}\cos\theta_n^s\cos Az_n^s + E_{A2}\cos\theta_n^s\sin Az_n^s - h\sin\theta_n^s\right) + \xi_n^s\right]mod(2\pi)$$

Laboratoire d'Informatique Signal & Image de la Côte d'Opale

Modèle :
$$y_n^s = (\alpha + \sum_j \beta_j x_n^{j,s} + \xi_n^s) \mod (2\pi)$$

Approche du maximum de vraisemblance :
 $L(Y) = \prod_{s=1}^{S} \prod_{n=1}^{N} \frac{1}{2\pi I_0(\kappa^s)} \exp(\kappa^s) \cos(y_n^s - (\alpha + \sum_j \beta_j x_n^{j,s})))$
Paramètre de concentration
 $\ln(L(Y)) = \sum_{s=1}^{S} \sum_{n=1}^{N} \kappa^s \cos(y_n^s - (\alpha + \sum_j \beta_j x_n^{j,s})) - N \sum_{s=1}^{S} \ln(2\pi I_0(\kappa^s))$
 $W(Y)$
Initialisation : Grid Search

Par annulation de la dérivée de ln(L(Y)), on trouve les estimées :

Signal & Image de la Côte d'Opale

Constellation de satellites	$\begin{array}{c} C/N_0 \\ (\text{dB.Hz}) \end{array}$	Intégration time (ms)	$CRLB(\hat{N}_{A2})$ (cm)	$STD(\hat{N}_{A2})$ (cm)	$CRLB(\hat{E}_{A2})$ (cm)	$STD(\hat{E}_{A2})$ (cm)	$CRLB(\hat{h})$ (cm)	$STD(\hat{h})$ (cm)
Côté Nord-Est	$\begin{array}{r} 40\\ 35\\ 30 \end{array}$	100 180 500	$ \begin{array}{r} 0.26 \\ 0.37 \\ 0.37 \\ 0.37 \end{array} $	$ \begin{array}{r} 0.27 \\ 0.37 \\ 0.40 \\ \end{array} $	$\begin{array}{c} 0.13 \\ 0.19 \\ 0.19 \end{array}$	$ \begin{array}{r} 0.14 \\ 0.19 \\ 0.20 \\ \end{array} $	$\begin{array}{r} 0.36 \\ 0.52 \\ 0.51 \end{array}$	$\begin{array}{c} 0.36 \\ 0.53 \\ 0.53 \end{array}$
Côté Ouest	$\begin{array}{r c} 40 \\ \hline 35 \\ \hline 30 \end{array}$	$\begin{array}{c} 17\\ 25\\ 60 \end{array}$	$ \begin{array}{r} 0.27 \\ 0.43 \\ 0.45 \end{array} $	$ \begin{array}{r} 0.28 \\ 0.44 \\ 0.49 \\ \end{array} $	0.22 0.35 0.38	$ \begin{array}{r} 0.22 \\ 0.35 \\ 0.42 \end{array} $	$\begin{array}{r} 0.25 \\ 0.40 \\ 0.43 \end{array}$	$\begin{array}{r} 0.25 \\ 0.40 \\ 0.46 \end{array}$
Quatre cadrans	$\begin{array}{r} 40\\ 35\\ 30 \end{array}$	9 11 15	$ \begin{array}{r} 0.21 \\ 0.37 \\ 0.53 \end{array} $	$ \begin{array}{r} 0.21 \\ 0.37 \\ 0.58 \end{array} $	$ \begin{array}{r} 0.16 \\ 0.28 \\ 0.41 \\ \end{array} $	$ \begin{array}{r} 0.16 \\ 0.29 \\ 0.43 \end{array} $	0.19 0.33 0.48	$\begin{array}{r} 0.19 \\ 0.33 \\ 0.51 \end{array}$

Plus le bruit est important plus le temps d'intégration augmente

Plus on a de satellites visibles moins le temps d'intégration nécessaire

SOUTH

WEST

est important

- 10 satellites utilisés, 20s de signal
- Temps d'intégration : 9 ms soit 22222 points

Positions recherchées : N_{A2} =42.01cm , E_{A2} =138.78cm , h=49.69cm (estimation GNSS RTK)

PRN	1	3	4	6	9	12	17	19	22	31
A_z (°)	133.63	65.32	173.26	-55.34	-155.95	-19.99	-99.59	-72.51	81.45	54.17
$ heta^s$ (°)	35.53	71.15	57.78	28.16	25.49	5.30	45.68	42.02	48.59	20.41
C/N_0 (dB Hz)	47.63	53.07	49.67	46.01	46.26	43.32	49.97	49.60	50.33	47.26

Paramètre	Moyenne (cm)	Ecart-type (mm)
\hat{N}_{A2}	42.35	1.77
\hat{E}_{A2}	138.10	1.24
\hat{h}	49.45	0.86

Positions recherchées : N_{A2} =42.01cm , E_{A2} =138.78cm , h=49.69cm

Laboratoire d'Informatique Signal & Image de la Côte d'Opale

- Signaux acquis chaque jour pendant 9 jours
- 10 satellites utilisés
- Temps d'intégration : 9 ms

Jour du Mois	03	04	07	08	10	11	12	14	17
Temps (UTC)	13h12	13h15	13h14	13h12	13h11	13h12	13h10	13h13	13h15
$\hat{N}_{A2}(cm)$	43.17	42.88	43.29	42.41	43.28	42.49	43.24	42.17	43.03
$\hat{E}_{A2}(cm)$	138.66	137.88	138.62	137.79	138.56	138.46	138.49	138.00	138.30
$\hat{h}(cm)$	49.17	49.10	49.18	49.35	49.28	49.29	49.24	49.28	49.30
		\hat{N}_{A2}			\hat{E}_{A2}			\hat{h}	
Moyenne (cm)	42.89		138.31		49.25				
Ecart-type (mm)	4.20			3.30		0.80			

SATELLITE SKYPLOT

- 7 satellites utilisés, 5s de signal
- Temps d'intégration : 9 ms

- Mesure in-situ : 42 cm
- Rayon du cercle : 41,58 cm

Laboratoire d'Informatique Signal & Image de la Côte d'Opale

Précision: 8,09 mm

Université Littoral Côte d'Opale

15

16

CD

Université Littoral Côte d'Opale

Problématiques :

- Transition lente : CUSUM
- Bruit multiplicatif : loi Log-gamma

Réflectivité GNSS-R : modèle statistique

Log-transformation homomorphique Mesure de réflectivité GNSS-R $R = \frac{T_r}{E(T_d)} = \frac{\frac{1}{N} \sum_{i=1}^{N} (l_r^2(0) + Q_r^2(0))}{a^2 + 2\sigma^2}$ $W(N,\lambda) = \log(R(N,\lambda))$ Digamma $E(R) = \frac{E(T_r)}{E(T_d)} = \frac{2\sigma_r^2}{a^2 + 2\sigma^2} = \lambda$ $E(W) = \Psi(N) + \log(\frac{\lambda}{N})$ Bruit de $R(N,\lambda) \sim Gamma(N,\lambda/N)$ speckle Trigamma multiplicatif $V(R) = \frac{\lambda^2}{N}$ $V(W) = \Psi^{(1)}(N)$ 17 Signal & Image de la Côte d'Opale

Change Point Analysis

Detection & Localization Approach

$$\begin{split} H_0 &: R_t \sim Gamma(N, \lambda_0/N) \sim \forall t \in \{1, \dots, n\} \\ H_\tau &: R_t \sim Gamma(N, \lambda_0/N) \sim \forall t \in \{1, \dots, \tau\} \\ &: R_t \sim Gamma(N, \lambda_1/N) \sim \forall t \in \{\tau + 1, \dots, n\} \end{split}$$

As we use the Homomorphic transformation of the reflectivity :

- Change point detection is defined with one threshold according to a false alarm rate.
- This threshold is for all signals of reflectivity processed with N values

Change Point Analysis

0.25

0.2

0.15

0.1

0.05

Reflectivity

Change Point Analysis

Change Point Analysis

Université Littoral Côte d'Opale

21

ulco

Université Littoral Côte d'Opale

Water Body Detection

IGN maps provide up-to-data map schemes that clearly show the actual locations of the water body surfaces at the day of the experimentation.

	Water body	Number of surfaces using IGN maps	% of detection using our radar technique
	Lakes/ Large Swamps	20	100%
	Ponds/Swamp s/Wetlands	17	94%
	Rivers/Canals	4	100%
A CARLER AND A PROPERTY AND A CONTRACT OF A	Streams/Brook s	6	83%
	Total	47	96%

Water Body Edge Localization

Côte d'Opale

Quantitative Analysis

18/starked.	Number of Detections	Accurate Edge	Mean Distance Localization Error	Localization Difference Standard Deviation	25	- 24
waterbody	Number of Detections	Localizations	(In meters)	(in meters)		
Lake	12	79.2%	0.59	0.69		
Oxbow Lake	4	62.5%	1.86	1.47	20	-
Pond	11	72.7%	0.68	0.73		
Pool	1	50.0%	0.82	0.41	15	-
River	12	79.2%	0.63	0.93		
Stream/Brook	6	58.3%	1.75	1.38	10	-
Swamp	15	86.7%	0.36	0.50		
Wetland	4	75.0%	0.99	1.12	5	-
Total	65	76.2%	0.96	0.90		1

30

PRN 5 (Elevation =65°, Azimuth= 280°)						
Waterbody	Number of Detections	Reflectivity - Mean	Reflectivity · Std			
Lake	6	0.35	0.10			
Oxbow Lake	1	0.37	0.12			
Pond	6	0.32	0.10			
Pool	1	0.30	0.11			
River	4	0.28	0.08			
Stream/Brook	2	0.24	0.09			
Swamp	6	0.29	0.08			
Wetland	1	0.27	0.11			
Total	27	0.30	0.10			

UCO

Université

 $(\mathbf{\hat{n}})$

(00)

PRN 7 (Elevation =57°, Azimuth= 70°)					
	Number of	Reflectivity -	Reflectivity -		
Waterbody	Detections	Mean	Std		
Lake	2	0.28	0.10		
Oxbow Lake	1	0.20	0.10		
Pond	3	0.27	0.10		
Pool	0	NA	NA		
River	4	0.23	0.09		
Stream\Broo					
k	2	0.19	0.06		
Swamp	5	0.26	0.09		
Wetland	0	NA	NA		
Total	16	0.24	0.09		

Number of Reflectivity - Reflectivity Std Waterbo Mean Lake 0.27 0.08 4 Oxbow Lake 2 0.24 0.09 Pond 2 0.30 0.10 Pool 0 NA NA River 0.27 0.09

PRN 30 (Elevation =73°, Azimuth= 145°)

Stream/Broo			
	2	0.21	0.06
Swamp	4	0.29	0.09
Vetland	3	0.25	0.10
otal	21	0.26	0.09

٦

MERCI

